Beeinflussung der Erregungsübertragung: Mechanismen und ihre Bedeutung

Die Reizweiterleitung im Nervensystem ist ein komplexer Vorgang, bei dem elektrische sowie chemische Potenziale angewandt werden. Dieser Prozess geschieht im Bruchteil einer Sekunde, was uns ermöglicht, schnell auf unsere Umwelt zu reagieren. Die Beeinflussung dieser Mechanismen kann tiefgreifende Auswirkungen auf unsere Wahrnehmung, unser Verhalten und unsere Gesundheit haben.

Grundlagen der Reizweiterleitung

Ein Reiz kann unterschiedlicher Natur sein, beispielsweise die Wahrnehmung einer Temperaturveränderung, ein visueller Reiz oder Schmerz. Die Reizaufnahme im Nervensystem geschieht über die Dendriten, dünne Fortsätze der Neuronen. Der Axonhügel sammelt die bei den Dendriten eingehenden elektrischen Potenziale. Nur wenn eine bestimmte Potenzialschwelle überschritten wird, gibt der Axonhügel das elektrische Potenzial an das Axon weiter. Dies ist eine Art Schutzmaßnahme des Nervensystems, um eine Reizüberflutung, die nicht verarbeitet werden kann, zu verhindern.

Das Ruhepotential

Wenn kein Reiz weitergegeben werden muss, zeigt das Neuron folgende Verteilung elektrischer Ladung: Im Zellinneren herrscht eine hohe Konzentration an Kaliumionen (K+) und organischen Anionen (zum Beispiel Eiweiß), während außerhalb überwiegend Natrium- (Na+) und Chloridionen (Cl-) anzutreffen sind. Im Ruhezustand besteht ein Gleichgewicht zwischen der Zellinnen und -außenseite, das durch verschiedene Transportmechanismen (Kaliumkanäle und Natrium-Kalium-Pumpen) aufrechterhalten wird (Ruhepotential). Auf der Innenseite der Zellmembrane ist die Ladung zunächst negativ.

Aktionspotential und saltatorische Erregungsleitung

Im Falle eines elektrischen Impulses, der durch einen Reiz ausgelöst wurde, öffnen sich unter anderem die Natrium-Kanäle der Zellmembran und Natriumionen strömen vermehrt ins Zellinnere. Dies bedeutet, dass abschnittsweise die Ladung an der Innen- und Außenseite des Neurons umgekehrt wird. Durch diese lokale Ladungsänderung wird der elektrische Impuls entlang des Axons bis zum Ende weitertransportiert.

Viele Axone im peripheren Nervensystem (der Teil des Nervensystems, der nicht zu Gehirn und Rückenmark gehört) werden durch einen Mantel aus speziellen Zellen (Schwann-Zellen = Hüll- und Stützzellen) elektrisch isoliert. Dabei entsteht keine durchgängige Umhüllung. Die Abschnitte, an denen das Axon frei liegt, werden Ranviersche Schnürringe genannt und dienen einer schnelleren Übertragung von Nervensignalen - die Erregung wird hierbei in Sprüngen von einem Schnürring zum nächsten weitergegeben (saltatorische Erregungsleitung).

Lesen Sie auch: Mechanismen der synaptischen Übertragung

Die Rolle der Synapsen

Am synaptischen Endknöpfchen, was dem Ende des Axons entspricht, wird der elektrische Impuls in ein chemisches Signal umgewandelt. Das elektrische Potenzial, das dort ankommt, löst die Ausschüttung chemischer Botenstoffe (sogenannte Neurotransmitter) aus. Dort löst der Neurotransmitter erneut einen elektrischen Impuls aus, der wieder am Axon entlangwandert und so von Zelle zu Zelle weitergegeben wird.

Neurotransmitter und ihre Vielfalt

Die Funktionsweise der meisten Synapsen beruht auf biochemischer Signalübertragung mittels Neurotransmittern. Die Neurotransmitter werden präsynaptisch ausgeschüttet und docken postsynaptisch an spezifische Rezeptoren anderer Neuronen an, wo sie erregend oder hemmend wirken. Jeder Neurotransmitter definiert ein System - eine spezifische Maschinerie, die für Synthese, Ausschüttung, Wirkung, Wiederaufnahme und Abbau des Transmitters zuständig ist, etwa das dopaminerge System oder das cholinerge System.

Klassen von Neurotransmittern

Schnelle Kommunikation beruht in der Regel auf den Aminosäure-Neurotransmittern Glutamat, GABA oder Glycin, die Ionenkanäle in der Zelle aktivieren. Durch ihre längerfristige, das Gesamtsystem modulierende Wirkung haben auch Amin-Transmitter wie die „Glückshormone“ Serotonin und Dopamin herausragende Bedeutung.

Jeder Neurotransmitter hat seine eigenen, spezifischen Rezeptoren - und in der Regel viele verschiedene davon, die sogenannten Subtypen. Unterscheiden lassen sie sich in Laboruntersuchungen beispielsweise dadurch, wie sie auf andere chemische Verbindungen reagieren. So gibt es bei den Glutamatrezeptoren drei Subtypen. Einer davon lässt sich außer durch Glutamat auch durch eine als „AMPA“ bezeichnete Substanz aktivieren, ein anderer durch die Aminosäure NMDA und der dritte durch die so genannte Kainsäure. Solche Verbindungen, auf welche die Rezeptorsubtypen ansprechen, heißen auch Agonisten. Im Gegensatz dazu stehen die Antagonisten, die einen Rezeptor blockieren statt aktivieren.

Unterscheiden lassen sich Rezeptoren auch noch durch ihren Wirkmechanismus. Alle Glutamatrezeptoren etwa, ob nun AMPA-, NMDA- und Kainat-Rezeptor, öffnen bei Aktivierung direkt einen Ionenkanal in der postsynaptischen Membran (ionotrope Rezeptoren).

Lesen Sie auch: Beeinflussung der Nervenzellen

Die heute bekannten Neurotransmitter lassen sich großteils in drei Substanzklassen einordnen. Die drei häufigsten Transmitter Glutamat, GABA und Glycin sind Aminosäuren - kleine Bausteine von Eiweißmolekülen, wie sie im Körper überall vorhanden sind. Serotonin, Dopamin und weitere Transmitter gehören zu den Aminen, die durch enzymatische Reaktionen aus Aminosäuren gebildet werden. Die dritte Gruppe bilden die Neuropeptide, von denen bis heute mehr als 50 entdeckt wurden. Peptide sind kurze Kettenmoleküle aus Aminosäuren und können von der Zelle genau wie Proteine (lange Aminosäureketten) entsprechend genetisch codierter Baupläne synthetisiert werden.

Die Entdeckung der chemischen Signalübertragung

Im 19. Jahrhundert lieferte die Entdeckung des synaptischen Spalts ein Indiz dafür, dass die Signalübertragung zwischen Nervenzellen chemisch erfolgen könnte. Die hohe Geschwindigkeit der Übertragung ließ viele Forscher dennoch an einen elektrischen Mechanismus glauben. Nicht so Otto Loewi. Der in Frankfurt geborene, später in die USA emigrierte Pharmakologe träumte nach eigener Aussage eines Nachts vom entscheidenden Experiment, wachte davon auf und setzte es sofort erfolgreich um. Dazu legte Loewi ein noch schlagendes Froschherz in eine Salzlösung und stimulierte elektrisch den Vagusnerv, was erwartungsgemäß den Herzschlag verlangsamte. Als Loewi dann ein zweites Froschherz in die gleiche Lösung legte, schlug auch dieses langsamer. Es musste also einen „Vagusstoff“ geben, der die neuronale Kommunikation vermittelt.

Die Rolle der Neurotransmittersysteme

Informationsverarbeitung im Gehirn hängt davon ab, dass Netzwerke von Nervenzellen über Synapsen miteinander im Austausch stehen. Aber wie genau kommunizieren die Zellen miteinander? Lange Zeit vermuteten Forscher, dass elektrischer Strom zwischen den Zellen fließt - eine naheliegende Hypothese, schließlich wird innerhalb einer einzelnen Nervenzelle Information vor allem als elektrisches Aktionspotenzial weitergeleitet. Tatsächlich gibt es auch so genannte elektrische Synapsen, die Neuronen verbinden, die ‘gap junctions’. Allerdings sind sie in unserem Nervensystem in der Minderheit. Die meisten Synapsen kommunizieren chemisch miteinander - eine Methode, die schon vor knapp einhundert Jahren von dem Wissenschaftler Otto Loewi eindrucksvoll nachgewiesen wurde.

Viele seiner Nachfolger beschäftigten sich seither mit der chemischen Übertragung von elektrischer Erregung an Synapsen und entdeckten, dass diese weit vielfältigere Möglichkeiten bieten als eine einfache elektrische Kontaktstelle. Die Botenstoffe, die an chemischen Synapsen Information übertragen, nennt man Neurotransmitter. In mühsamer Puzzlearbeit konnten Wissenschaftler bis heute Dutzende dieser Substanzen aufspüren. Sie lassen sich in unterschiedliche Klassen einteilen. Die bekanntesten sind wohl Serotonin und Dopamin, die beide auch als „Glückshormone“ gelten.

Neurotransmitter wandern in der Regel von der Synapse des sendenden Neurons über einen synaptischen Spalt zu einer postsynaptischen Membran, die auf Axon, Dendriten oder Zellkörper einer weiteren empfangenden Nervenzelle sitzen kann. Sie werden auf der Ausgangsseite, also in der Synapse, auf Vorrat gebildet und in kleinen Bläschen, den Vesikeln, gespeichert. Läuft ein Aktionspotenzial ein, entleeren sich die Vesikel in den synaptischen Spalt. An der postsynaptischen Membran passen die Transmittermoleküle zu bestimmten Rezeptor-​Proteinen wie der Schlüssel ins Schloss. Dort können sie erregend oder hemmend wirken - das hängt jeweils vom Transmitter selbst und in vielen Fällen auch vom speziellen Rezeptortyp ab. Auf jeden Fall entsteht ein Input, den das postsynaptische Neuron zusammen mit den von anderswo einlaufenden Signalen weiterverarbeiten kann.

Lesen Sie auch: Alles über die neuromuskuläre Synapse

Nach der Signalübertragung heißt es aufräumen: Damit die Synapse wieder neu funktionsfähig wird, müssen die Transmittermoleküle aus dem Spalt verschwinden. Zumindest bei denjenigen Substanzen, die für schnelle Kommunikation zuständig sind, hilft die präsynaptische Membran mit: Transportproteine sorgen für die Wiederaufnahme des Transmitters im Neuron. Dort wird er entweder wiederverwertet oder abgebaut. Jeder Transmitter braucht also eine speziell auf ihn abgestimmte Maschinerie, damit Synthese, Freisetzung, Wirkung und Wiederaufnahme reibungslos funktionieren. Da Nervenzellen jeweils auf einen oder wenige Transmitter spezialisiert sind, lassen sich jedem Botenstoff konkrete Neuronennetzwerke zuordnen.

Besonders bekannte und bedeutsame Beispiele solcher Neurotransmittersysteme sind das cholinerge System rund um den Transmitter Acetylcholin, das serotonerge System mit dem Botenstoff Serotonin und analog das dopaminerge System mit den Neurotransmitter Dopamin. Eine besondere Eigenschaft dieser drei Netzwerke ist, dass sie relativ kleine Ursprungsgebiete haben, sie also nur von bestimmten, eng gefassten Neuronengruppen produziert werden. Ihr Einfluss aber reicht über 100.000 Synapsen und mehr pro beteiligtem Neuron in sehr viele verschiedene Stellen im Gehirn hinein. Hinzu kommt, dass Acetylcholin, Serotonin und Dopamin im Vergleich etwa zu Glutamat langsamer, länger anhaltend wirken, weil sie nicht nur in jeweils einer einzelnen Synapse ausgeschüttet werden, sondern diffus in einem größeren Gebiet. Sie spielen deshalb eine besondere Rolle bei der Regulierung umfassender Zustände wie Schlaf oder Gemütsverfassung.

Acetylcholin: Der erste entdeckte Neurotransmitter

Acetylcholin wurde wohl deshalb als erster Neurotransmitter entdeckt, weil er für das vegetative Nervensystem sowie an der Schnittstelle zwischen motorischen Nerven und Skelettmuskulatur eine entscheidende Rolle spielt. Aber auch im Gehirn finden sich cholinerge Neuronen. Die wichtigsten davon lassen sich zu zwei diffusen Modulationssystemen zusammenfassen. Das eine System innerviert von der Basis des Großhirns aus (zwischen und unter den Basalganglien) Hippocampus, Neocortex und Riechkolben. Diese Zellen gehören zu den ersten, die bei der Alzheimer-​Krankheit absterben. Inwieweit es darüber hinaus eine Verbindung zu der Krankheit gibt, ist unklar. Unter den zugelassenen Alzheimer-​Medikamenten, die den Verlust geistiger Fähigkeiten zumindest verzögern sollen, befinden sich aber Wirkstoffe, die den Acetylcholin-​Abbau im Gehirn verlangsamen. Das zweite System besteht aus Zellen im Pons und im Tegmentum des Mittelhirns. Es wirkt vor allem in den Thalamus hinein, darüber aber auch stark ins Großhirn. Beteiligt sind die cholinergen Neuronen etwa an der Steuerung von Aufmerksamkeit und der Erregbarkeit des Gehirns während Schlaf- und Wachrhythmus. In Tierversuchen wurde deutlich, dass Acetylcholin die Weiterleitung sensorischer Reize vom Thalamus in die zuständigen Cortex-​Regionen fördert.

Serotonin: Einfluss auf Stimmung und Schlaf

Neurone, die Serotonin als Botenstoff ausschütten, beeinflussen zum Beispiel das Schmerzempfinden, Schlaf- und Wachrhythmus und den Gemütszustand. Serotonin ist auch außerhalb des zentralen Nervensystems weit verbreitet. Erstmals isoliert wurde es in der Schleimhaut des Magen-​Darm-​Trakts. Den Namen hat es von seiner Wirkung auf den Blutdruck: Als Bestandteil des Serums reguliert es die Spannung (Tonus) der Blutgefäße. Als Neurotransmitter im Gehirn ist Serotonin nur in Neuronen nachweisbar, deren Zellkörper in den so genannten Raphekernen im Hirnstamm sitzen. Von dort innervieren sie mit ihren Axonen praktisch alle Regionen des Gehirns und beeinflussen etwa Schmerzempfinden, Schlaf- und Wachrhythmus und den Gemütszustand. So sind die Raphekerne im Zustand erhöhter Wachsamkeit besonders aktiv, am wenigsten dagegen im Schlaf. Umgekehrt haben Studien gezeigt: Ist Serotonin im Gehirn im Übermaß vorhanden, können Unruhe und Halluzinationen entstehen. Serotoninmangel kann zu depressiven Verstimmungen, Angst und Aggressionen führen.

Serotonin ist in vielen Nahrungsmitteln enthalten, kann aber nicht von der Blutbahn ins Gehirn gelangen. Vielmehr wird es dort aus der Aminosäure Tryptophan erzeugt. Allerdings lässt sich die Serotoninmenge im Gehirn über den Tryptophanspiegel beeinflussen - und dieser sich wiederum über die Ernährung. So führt kohlenhydratreiche Kost zu hoher Tryptophan-​Verfügbarkeit, umgekehrt hat ein Entzug von Kohlenhydraten in Studien Schlafstörungen und Depressionen bewirkt, was man auf das dann fehlende Serotonin zurückführte. Viele Antidepressiva und Medikamente gegen Angst erhöhen gezielt die Menge verfügbaren Serotonins im Gehirn, etwa indem sie die präsynaptische Wiederaufnahme verlangsamen. Diese Wirkstoffe kennt man als selektive Serotonin-​Wiederaufnahmehemmer (SSRI). Trotzdem lässt sich die Stimmung nicht einfach verbessern, indem man den Serotoninspiegel erhöht.

Dopamin: Belohnung und Bewegung

Das Dopamin spielt als Botenstoff im Belohnungszentrum eine Rolle. Dopamin entsteht ebenso wie Noradrenalin und Adrenalin - weitere Neurotransmitter, die besonders im peripheren vegetativen Nervensystem wichtig sind, man denke an den berühmten „Adrenalinstoß“ - aus der Aminosäure Tyrosin. Bevor Tierexperimente eher versehentlich seine eigenständige Bedeutung für das zentrale Nervensystem zeigten, galt Dopamin lange nur als chemische Vorstufe des Noradrenalins.

Dopaminhaltige Zellen finden sich vielerorts im Zentralnervensystem, zwei dopaminerge Neuronengruppen haben aber besondere Bedeutung. Eine befindet sich in der Substantia nigra im Mittelhirn und sendet ihre Nerven ins Striatum. Dieser Pfad ist für die Steuerung willkürlicher Bewegungen wichtig: Degenerieren die dopaminergen Zellen in der Substantia nigra, löst das verhängnisvolle motorische Störungen aus - die Parkinson-​Krankheit. Das zweite dopaminerge System geht ebenfalls aus dem Mittelhirn hervor, aus dem ventralen Tegmentum. Von dort reichen die Axone in bestimmte Teile des Großhirns und des limbischen Systems. Bekannt ist dieser Pfad deshalb auch als mesocorticolimbisches System. Ihm wird eine wichtige Rolle bei der Motivation zugeschrieben: Es gilt als Belohnungssystem, das bei Tier wie Mensch überlebensdienliche Verhaltensweisen verstärkt. Erhöht man durch geeignete Wirkstoffe die verfügbare Dopamin-​Menge, so wirkt sich das stimulierend aus - oft allerdings auch suchterzeugend. Ein bekanntes Beispiel ist Kokain: Es hemmt die Wiederaufnahme von Dopamin und sorgt so für Wachheit, gesteigertes Selbstwertgefühl und Euphorie; gleichzeitig macht die Stimulation des Belohnungssystems abhängig. Aber auch andere Symptome und psychische Krankheiten werden mit Störungen des Dopaminsystems in Verbindung gebracht.

Beeinflussung der Erregungsübertragung

Die Erregungsübertragung kann auf verschiedenen Ebenen beeinflusst werden. Dazu gehören:

  • Pharmakologische Beeinflussung: Medikamente und Drogen können die Synthese, Freisetzung, Wirkung oder Wiederaufnahme von Neurotransmittern beeinflussen.
  • Ernährung: Die Verfügbarkeit von Vorläufersubstanzen für Neurotransmitter, wie Tryptophan für Serotonin, kann die Neurotransmission beeinflussen.
  • Krankheiten: Neurodegenerative Erkrankungen wie Alzheimer oder Parkinson können die Funktion von Neuronen und Synapsen beeinträchtigen.
  • Umweltfaktoren: Stress, soziale Interaktionen und andere Umweltfaktoren können die Neurotransmission beeinflussen.

Wie Drogen die Reizweiterleitung an Synapsen manipulieren

Die Erregungsübertragung an einer Synapse beginnt mit einem Aktionspotential, welches ein synaptisches Endknöpfchen erreicht und es depolarisiert. Dadurch werden Calciumkanäle geöffnet, die dazu führen, dass Vesikel mit Neurotransmittern in den synaptischen Spalt ausgeschüttet werden.

Synapsenentstehung und axonale Transportmechanismen

Wie entstehen eigentlich Synapsen, also jene Kontaktstellen, die die Erregungsübertragung von einer Nervenzelle zur anderen ermöglichen? Forschende haben einen entscheidenden Mechanismus aufgedeckt und die Identität der axonalen Transportvesikel aufgeklärt. Die Erkenntnisse liefern wichtige Grundlagen, um künftig die Regeneration von Nervenzellen zu befördern oder auch Alterungsprozessen entgegenzuwirken.

Axonaler Transport: Ein überraschender Befund

Synaptische Vesikel sind jene Membranbläschen, welche die Botenstoffe enthalten und die jede Synapse auf Vorrat anlegt, damit sie elektrische Signale in chemische umwandeln kann. Die synaptischen Vesikelproteine und die Proteine der sogenannten aktiven Zone ebenso wie die Adhäsionsproteine, die die Synapse zusammenkleben nehmen alle den gleichen Bus.

Die Rolle von Kinesin "KIF1A"

Für den axonalen Transport wird eine Maschinerie aus Motorproteinen angeworfen. Der Haupttreiber ist demnach das sogenannte Kinesin „KIF1A“. Dieses Motorprotein ist vor allem im Zusammenhang mit neurologischen Störungen im peripheren Nervensystem und im Gehirn bekannt. Mutationen in KIF1A behindern den axonalen Transport präsynaptischer Proteine und es kommt so zu neurologischen Symptomen wie Bewegungsstörungen, Ataxie oder geistigen Behinderungen.

Eine neue Organelle für den Transport

Während die allermeisten sekretorischen Vesikel aus dem sogenannten Golgi-Apparat stammen, haben diese axonalen Transportvesikel keine Golgi-Markierung, sondern teilen sich Markierungen mit dem endolysosomalen System, das in anderen Zellen den Abbau von defekten Proteinen bewirkt. Neuronen haben eine Art neue Organelle erfunden, eine Transportorganelle, die es wahrscheinlich in dieser Form nur in Nervenzellen gibt.

Klinische Relevanz

Wenn die Kontakte zwischen den Nervenzellen kaputtgehen, sei es durch eine Krankheit, einen Unfall oder schlicht durch den Alterungsprozess, ist es wichtig, den Mechanismus des axonalen Transports und die beteiligten Schlüsselproteine zu kennen, um therapeutisch eingreifen zu können.

Hemmende Synapsen und ihre präzise Wirkung

Informationen werden in unserem Gehirn über Billionen von Synapsen von einer Zelle zur nächsten weitergegeben. Für einen optimalen Datenfluss ist jedoch nicht nur die Übertragung von Informationen wichtig, sondern auch ihre gezielte Hemmung. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried konnten nun in Mäusen zeigen, dass selbst einzelne hemmende Synapsen die Signalverarbeitung maßgeblich beeinflussen können.

Die Bedeutung der dendritischen Hemmung

Die Neurobiologen untersuchten den Einfluss der dendritischen Hemmung auf Nervenzellen im Hippocampus, einem Gehirnbereich, in dem unter anderem Kurzzeit- in Langzeiterinnerungen umgewandelt werden. Mit einer fein abgestimmten Kombination verschiedener Methoden konnten die Forscher durch das Mikroskop beobachten, wie schon einzelne hemmende Synapsen die Stärke und Ausbreitung eines Signals in der gehemmten Nervenzelle erheblich veränderten. Die Ergebnisse zeigen, dass Nervenzellsignale durch hemmende Synapsen mit einer Präzision von wenigen Millisekunden und Mikrometern in ihrer Amplitude reguliert werden können.

Es war bekannt, dass hemmende Nervenzellen eine sehr grundlegende Funktion im Gehirn erfüllen. "Dass aber bereits einzelne hemmende Synapsen eine wichtige Rolle spielen und eine so präzise Wirkung haben, hat uns richtig fasziniert", erklärt Fiona Müllner, die Erstautorin der gerade erschienenen Studie. Aufbauend auf ihre Ergebnisse konnten die Wissenschaftler mit Hilfe eines Modells zeigen, wie einzelne hemmende Synapsen sogar die synaptische Plastizität, die Grundlage für Lernen und Gedächtnis, kontrollieren könnten.

tags: #beeinflussung #der #erregungsubertragung