Das Gehirn (Encephalon) ist die zentrale Steuereinheit des menschlichen Körpers. Als Teil des zentralen Nervensystems (ZNS) liegt es innerhalb des knöchernen Schädels und füllt diesen aus. Es besteht aus Milliarden von Nervenzellen, die über Nervenbahnen mit dem gesamten Organismus verbunden sind und ihn steuern.
Was ist das Gehirn?
Das Gehirn ist der Teil des zentralen Nervensystems, der innerhalb des knöchernen Schädels liegt und diesen ausfüllt. Es besteht aus unzähligen Nervenzellen, die über zuführende und wegführende Nervenbahnen mit dem Organismus verbunden sind und ihn steuern.
Das Gehirnvolumen (Mensch) beträgt etwa 20 bis 22 Gramm pro Kilogramm Körpermasse. Das Gewicht (Gehirn) macht mit 1,5 bis zwei Kilogramm ungefähr drei Prozent des Körpergewichts aus.
Ein Mensch hat ungefähr 100 Milliarden Gehirnzellen, die das zentrale Nervensystem, unser Gehirn, aufbauen und untereinander verknüpft sind. Die Zahl dieser Verknüpfungen wird auf 100 Billionen geschätzt.
Gehirn-Aufbau: Fünf Abschnitte
Das menschliche Gehirn lässt sich grob in fünf Abschnitte gliedern:
Lesen Sie auch: Faszination Nesseltiere: Wie sie ohne Gehirn leben
- Großhirn (Telencephalon)
- Zwischenhirn (Diencephalon)
- Mittelhirn (Mesencephalon)
- Kleinhirn (Cerebellum)
- Nachhirn (Myelencephalon, Medulla oblongata)
Großhirn (Telencephalon)
Das Großhirn ist der größte und schwerste Teil des Gehirns und ähnelt mit seinen Falten und Furchen einem Walnusskern. Das Großhirn gliedert sich in zwei Hälften, die Hemisphären, die durch den Balken (Corpus callosum) miteinander verbunden sind. Die Oberfläche der Hemisphären besteht aus Furchen (Sulci) und Windungen (Gyri), die der Oberflächenvergrößerung dienen. Beinahe alle Furchen und Windungen sind mittlerweile benannt. Die graue Substanz liegt außen und bildet die Großhirnrinde, die weiße Substanz liegt innen und bildet das Marklager. Darüber hinaus wird die gesamte Großhirnrinde in 52 Rindenfelder (Brodmann-Areale oder Areae) eingeteilt, die die Endstätten der aufsteigenden Nachrichten-/Nervenbahnen aus Rückenmark, Hirnstamm, Zwischenhirn und Kleinhirn darstellen.
Die verschiedenen Anteile der Großhirnrinde übernehmen ganz unterschiedliche Funktionen. Im Großhirn sitzen auf der einen Seite Sprache und Logik, auf der anderen Seite Kreativität und Orientierungssinn.
In der Hirnrinde - dem äußeren Bereich des Großhirns - sind die Lern-, Sprech- und Denkfähigkeit sowie das Bewusstsein und das Gedächtnis verankert. Hier laufen die Informationen aus den Sinnesorganen zusammen, werden verarbeitet und schließlich im Gedächtnis gespeichert.
Darstellung einiger wichtige Rindenfelder (Areale oder Areas) der Großhirnrinde: Die Motorische Rinde wird z.B. von zwei Rindenfeldern (Areal 4 und 6) gebildet; ebenfalls zwei Rindenfelder (Areal 44 und 45) bilden das motorische Sprachzentrum (auch Brocasches Feld genannt); das Sehzentrum wird von Areal 17 gebildet. Beim Marklager handelt es sich um Nervenfasermassen, die entweder von Nervenzellen der Großhirnrinde abgehen oder zu ihr hinziehen. Die Projektionsfasern stellen auf- und absteigende Verbindungen zwischen der Hirnrinde und allen unter ihr gelegenen (subkortialen) Zentren her. Die von der Rinde absteigende Bahnen laufen fächerförmig zusammen und bilden tief im Inneren des Großhirns eine Region, die innere Kapsel (Capsula interna) genannt wird. Diese wiederum enthält die verschiedenen Bahnen zum Thalamus, zur Brücke (im Hirnstamm) und zum Rückenmark. Die Kommissurenfasern verknüpfen die Rindenbereiche der beiden Großhirnhälften miteinander. Die Basalganglien oder Stammganglien sind Gruppen von Nervenzellkernen (also graue Substanz), die in der Tiefe der weißen Substanz beider Hemisphären liegen. Man unterscheidet verschiedene Basalganglien (bezeichnet zum Beispiel als Claustrum, Globus pallidum oder Corpus striatum).
An die Großhirnrinde ist unter anderem das Bewusstsein geknüpft. Nur diejenigen Sinnesreize werden bewusst, welche bis zur Großhirnrinde weitergeleitet werden. Anmerkung: Nur der Mensch besitzt die Fähigkeit der Sprache. Als innere Sprache ist sie eine Voraussetzung für das Denken; gesprochen ermöglicht sie die Kommunikation und geschrieben die Weitergabe von Informationen über Jahrtausende hinweg. Die Fähigkeit zur Sprache ist unmittelbar gebunden an die Unversehrtheit bestimmter Rindengebiete des Großhirns, die in der Regel nur in einer Gehirnhälfte (Hemisphäre) liegen. Diese wird als dominante Hemisphäre bezeichnet und ist beim Rechtshänder meist die linke, beim Linkshänder meist die rechte.
Lesen Sie auch: Lesen Sie mehr über die neuesten Fortschritte in der Neurowissenschaft.
Im Frontallappen liegt unter anderem die Präzentralregion. Hier befinden sich die beiden Rindenfelder, die die motorische Rinde (Areas 4 und 6) bilden (siehe Abbildung zu den Rindenfeldern der Großhirnrinde oben). Die motorische Rinde ist das Hauptursprungsgebiet der Nachrichtenvermittlung für Muskelaktivitäten. Ein weiteres Rindenfeld (Area 8) gilt als das Blickzentrum für willkürliche Augenbewegungen. Schädigungen im Bereich der ganz vorn und an der Unterseite liegenden Rindengebiete des Frontallappenshabenmanchmal schwere Persönlichkeitsveränderungen zur Folge.
Im Scheitellappen (Parietallappen) liegt unter anderem die Postzentralregion. verschiedene Formen der Agnosie.
In den Schläfenlappen liegt unter anderem die Hör- und die Sprachregion. Im hinteren Bereich der oberen Schläfenlappenwindung (Gyrus temporalis superior) der dominanten Hemisphäre liegt das sensorische oder Wernicke Sprachzentrum (siehe Abbildung oben), bei dessen Schädigung eine Störung des Wortverständnisses eintritt (sensorische Aphasie). Man nimmt außerdem an, dass die Schläfenlappenrinde eine wichtige Rolle der bewussten und unbewussten Verfügbarkeit der eigenen Vergangenheit und der in ihr gemachten Erfahrungen spielt, ohne die man sich in seiner Umwelt nicht zurechtfinden würde. Im Schläfenlappen liegt auch der Hippocampus, eine Sehpferdchen-förmige Struktur, die hauptsächlich für die Gedächtnisbildung zuständig ist. Bei einem Hirntumor im Schläfenlappen (temporaler Hirntumor) können unter anderem Hör- und/oder Sprachstörungen auftreten. Ist der Hippocampus mitbetroffen, sind oft Gedächtnisstörungen die Folge.
Im Hinterhauptslappen liegt die Sehregion (siehe Sehzentrum in Abbildung oben). Area 17 bildet die Endigungsstätte aller Sehbahnen, die Sehrinde. Schädigungen im Bereich des Hinterhauptslappens (zum Beispiel durch einen okzipitalen Hirntumor) können zu einer Rindenblindheit führen.
Bei Schädigungen im Bereich des Marklagers kann es also neben dem Ausfall verschiedener Faserbahnen, die die einzelnen Rindengebiete mit Informationen versorgen und von diesen Informationen erhalten, zur Zerstörung von Stammganglien kommen. Manche große Tumoren können zu einer Schwellung des umgebenden Gewebes führen (perifokales Ödem). So kann beispielsweise ein großer Tumor im Großhirn ein Ödem im Marklager verursachen, das - obwohl der Tumor dieses nicht direkt schädigt - einen gewissen Druck auf die sich darin befindlichen Nervenzellkerngruppen ausübt.
Lesen Sie auch: Tinnitus und Gehirnaktivität: Ein detaillierter Einblick
Zwischenhirn (Diencephalon)
Das Zwischenhirn befindet sich zwischen dem Großhirn und dem Mittelhirn. Es besteht unter anderem aus dem Thalamus und dem Hypothalamus. Mehr Informationen über den Aufbau und die Funktion des Diencephalons lesen Sie im Beitrag Zwischenhirn.
Der Thalamus kann als „Tor zum Bewusstsein“ vorgestellt werden. Seine Funktion ist die Sammlung fast aller Sinneswahrnehmungen und die Weiterleitung an das primär sensorische Rindenfeld im Scheitellappen des Großhirns.
Der Hypothalamus kontrolliert den Hormonhaushalt. Damit stellt er sozusagen die Verbindung zwischen Hormon- und Nervensystem dar. Er steuert wichtige Funktionen, wie Schlaf-Wach-Rhythmus, Körpertemperatur und Sexualverhalten. Der Hypothalamus ist verbunden mit der Hypophyse. Sie ist die Hormondrüse am Gehirn.
Über den Hypothalamus werden der Schlaf-Wach-Rhythmus, Hunger und Durst, das Schmerz- und Temperaturempfinden und der Sexualtrieb gesteuert.
Hirnstamm
Im unteren Schädelbereich befindet sich die Hirnbasis, die - entsprechend der knöchernen Schädelbasis - stärker modelliert ist. Hier liegt der Hirnstamm.
Der Hirnstamm ist der stammesgeschichtlich älteste Teil des Gehirns und besteht aus Mittelhirn, Medulla oblongata und Brücke (Pons). Der Hirnstamm, der entwicklungsgeschichtlich älteste Teil des Gehirns, ist für die grundlegenden Lebensfunktionen zuständig. Er steuert die Herzfrequenz, den Blutdruck und die Atmung sowie Reflexe wie den Lidschluss-, Schluck- oder Hustenreflex.
Der Hirnstamm schaltet Informationen vom Gehirn zum Kleinhirn und dem Rückenmark um und kontrolliert Bewegungen der Augen sowie die Mimik.
Mittelhirn (Mesencephalon)
Das Mesencephalon ist der kleinste Abschnitt des Gehirns.
Medulla oblongata (Myelencephalon)
Das auch als Nachhirn bezeichnete Meyelencephalon stellt den Übergang zwischen Gehirn und Rückenmark dar. Im Nachhirn überkreuzen sich viele Nervenbahnen unserer beiden Körperhälften.
Kleinhirn (Cerebellum)
Oberhalb des Hirnstamms und unterhalb der beiden Großhirnhemisphären sitzt das Kleinhirn. Genau wie das Großhirn, lässt sich auch das Kleinhirn in zwei Hemisphären einteilen. Zwischen den beiden Hälften liegt der Kleinhirnwurm. Das Kleinhirn ist vor allem für das Gleichgewicht und die Steuerung von erlernten Bewegungsabläufen verantwortlich.
Das Kleinhirn koordiniert unsere Bewegungen und das Gleichgewicht und speichert erlernte Bewegungen.
Graue und Weiße Substanz
Die graue Substanz im Gehirn besteht in erster Linie aus Nervenzellkörpern. Der Name kommt daher, dass die Nervenzellen im lebenden Organismus rosa sind, sich nach dessen Tod aber grau verfärben. Aus grauer Substanz bestehen etwa die Großhirnrinde, die Basalganglien, die Kleinhirnrinde und die Hirnnervenkerne. Etwa 80 Prozent der Hirndurchblutung sind für die Versorgung der grauen Substanz notwendig.
Die Basalganglien sind eine Gruppe Großhirn- und Zwischenhirnkerne aus grauer Substanz.
Neben der grauen Substanz gibt es noch die weiße Substanz, die aus den Nervenzellfortsätzen, den Nervenfasern (Axonen), besteht. Die weiße Substanz findet sich im Mark von Großhirn und Kleinhirn.
Hirnnerven
Dem Gehirn entspringen zwölf paarige Nerven, die den Kopf, den Hals und Organe im Rumpf versorgen.
Blutversorgung des Gehirns
Diese Menge kann bis zum 50. Lebensjahr geringfügig schwanken, nimmt aber danach ab (zusammen mit dem Sauerstoff- und Glukoseverbrauch). Zwischen 15 und 20 Prozent des Herzminutenvolumens entfällt auf die Blutversorgung des Gehirns.
In Schlaf- und Wachphasen wird das Gehirn stets etwa gleichermaßen durchblutet. Auch bei Blutdrucksteigerungen, Blutdruckabfall, starker körperlicher Anstrengung oder sogar unregelmäßigem Herzschlag ändert sich die Durchblutung des Gehirns kaum - außer, wenn der systolische Blutdruck stark abfällt (unter 70 mmHg) oder stark ansteigt (über 180 mmHg).
Die Blutversorgung des Gehirns erfolgt über die rechte und linke innere Halsschlagader (Arteria carotis interna), die aus der gemeinsamen Halsschlagader (Arteria communis) entspringen, und über die Arteria vertebralis, die aus den Wirbelkörpern kommt und durch das Hinterhauptsloch in die Schädelhöhle eintritt. Durch weitere Arterien werden diese zu einem Gefäßring (Circulus arteriosus cerebri) geschlossen, der die Basis des Zwischenhirns umfasst.
Die vordere Hirnarterie (Arteria cerebri anterior) versorgt das Gewebe hinter der Stirn und im Bereich des Scheitels.
Die mittlere Hirnarterie (Arteria cerebri media) ist für die Seite und weiter innen liegende Gehirnbereiche wichtig. Die vordere und die mittlere Hirnarterie zweigen von der inneren Halsschlagader ab.
Die hintere Hirnarterie (Arteria cerebri posterior) versorgt den Hinterkopf und den unteren Bereich des Gehirns sowie das Kleinhirn. Sie wird mit Blut aus den Wirbelarterien gespeist.
Bevor die drei Arterien in „ihre“ Hirnregionen ziehen und sich dort in kleinere Äste verzweigen, liegen sie nahe beieinander unterhalb des Gehirns. Hier sind sie über kleinere Blutgefäße miteinander verbunden - ähnlich wie in einem Kreisverkehr. Auch an weiter entfernten Stellen gibt es Verbindungswege zwischen den einzelnen Arterien. Das hat den Vorteil, dass Durchblutungsstörungen im Gehirn bis zu einem gewissen Grad ausgeglichen werden können: Wenn zum Beispiel ein Arterienast allmählich immer enger wird, kann über diese „Umwege“ (sogenannte Kollateralen) trotzdem Blut in den betroffenen Hirnbereich fließen.
Durch diesen Gefäßring wird sichergestellt, dass der Blutbedarf des empfindlichen Gehirns auch bei Schwankungen in der Blutzufuhr immer ausreichend ist. Der Gefäßring und seine Äste liegen zwischen zwei Hirnhäuten (der Spinngewebshaut und der inneren Hirnhaut) im sogenannten Subarachnoidalraum und sind dort von Liquor (Hirn-Rückenmarksflüssigkeit) umgeben, der die dünnwandigen Gefäße schützt.
Die feinsten Aufzweigungen (Kapillaren) der Hirnarterien geben zwar Sauerstoff und Nährstoffe aus dem Blut an die Gehirnzellen ab - für andere Stoffe sind sie jedoch weniger durchlässig als vergleichbare Blutgefäße im übrigen Körper. Fachleute nennen diese Eigenschaft „Blut-Hirn-Schranke“. Sie kann das empfindliche Gehirn zum Beispiel vor im Blut gelösten Schadstoffen schützen.
„Verbrauchtes“ - also sauerstoffarmes - Blut wird über die Gehirnvenen abtransportiert. Sie leiten es in größere Blutgefäße, die sogenannten Sinusse. Die Sinuswände sind durch harte Hirnhaut verstärkt, die die Gefäße gleichzeitig aufspannen.
Liquor und Ventrikelsystem
Der Liquor ist die Flüssigkeit, welche das Gehirn und auch das Rückenmark schützend umgibt.
Das Gehirn weist mehrere Hohlräume (Hirnkammern) auf, in denen der Liquor zirkuliert und die zusammen das Ventrikelsystem bilden.
Die Blut-Hirn-Schranke
Das empfindliche Gewebe im Gehirn ist durch die Blut-Hirn-Schranke gegen schädigende Substanzen im Blut (wie Gifte, Krankheitserreger, bestimmte Medikamente etc.) abgeschirmt.
Die sogenannte Blut-Hirn-Schranke stellt eine Barriere zwischen den Blutgefäßen und den Nervenzellen dar.
Energieverbrauch und Gehirnkapazität
Der Energieverbrauch im Gehirn ist enorm hoch. Fast ein Viertel des Gesamtenergiebedarfs des Körpers entfällt auf das Gehirn. Die Glukosemenge, die täglich mit der Nahrung aufgenommen wird, wird bis zu zwei Drittel vom Gehirn beansprucht.
Denn obwohl das Gehirn nur 2% des Körpergewichts ausmacht, geht ungefähr ein Fünftel unseres gesamten Sauerstoffbedarfs an das Gehirn.
Die Gehirnkapazität ist deutlich größer als die, die wir im Alltag tatsächlich nutzen. Das bedeutet: Ein Großteil unserer Gehirnkapazität ist ungenutzt.
Entwicklung des Gehirns
Die embryonale Entwicklung des Gehirns aus dem Neuralrohr zeichnet sich einerseits durch ein besonderes Größenwachstum aus, andererseits durch ein ungleichmäßiges Dickenwachstum der Wand und besondere Knickstellen. Dadurch wird das Gehirn schon frühzeitig in mehrere Abschnitte unterteilt.
Das Gehirn eines Embryos entwickelt sich etwa ab der vierten Schwangerschaftswoche. Dazu bilden sich aus dem vorderen Teil Neuralrohr drei bläschenförmige Erweiterungen aus. Bereits in dieser frühen Entwicklungsphase wird das Gehirn also in unterschiedliche Abschnitte eingeteilt. Aus den drei ersten Bläschen bilden sich das Vorder-, das Mittel- und das Rautenhirn. Im Laufe der Entwicklung gehen daraus dann weitere Hirnbläschen hervor, welche die restlichen Gehirnabschnitte bilden.
Aus der Hirnanlage bilden sich zunächst drei hintereinander liegende Abschnitte (primäre Hirnbläschen) heraus, die dann das Vorderhirn, das Mittelhirn und das Rautenhirn bilden. In der weiteren Entwicklung entstehen daraus fünf weitere, sekundäre Hirnbläschen: Aus dem Vorderhirn entwickeln sich Großhirn und Zwischenhirn. Aus dem Rautenhirn gehen die Medulla oblongata, die Brücke und das Kleinhirn hervor.
Wie funktioniert das Gehirn?
Ein reibungsloses Funktionieren aller Organe und Gewebe im Körper sowie ein sinnvolles Verhalten sind nur möglich, wenn alle Organfunktionen von einer übergeordneten Kontrollinstanz koordiniert und kontrolliert werden und alle Informationen, die uns die Umwelt liefert, aufgenommen, verarbeitet und beantwortet werden. Diese Aufgabe leistet unser Gehirn, das Netzwerk aus Milliarden von Nervenzellen (Neuronen).
tags: #das #gehirn #und #bestriftung