Die detaillierte Funktionsweise von Synapsen

Synapsen sind die Kontaktstellen, die die Erregungsübertragung von einer Nervenzelle zur anderen ermöglichen. Ob im Gehirn oder in der Muskulatur - überall dort, wo sich Nervenzellen befinden, gibt es auch Synapsen. Die Kontaktstellen der Nervenzellen bilden die Grundlage für die Erregungsübertragung, also die Kommunikation der Nervenzellen untereinander. Wie in jedem Kommunikationsprozess gibt es auch hier einen Sender und einen Empfänger: Als Sender fungieren dabei Nervenbahnen, die man Axone nennt, welche elektrische Signale generieren und übertragen. Synapsen stellen Kontaktstellen zwischen axonalen Nervenendigungen (die Präsynapse) und postsynaptischen Neuronen dar. An diesen Synapsen wird das elektrische Signal in chemische Botenstoffe umgewandelt, die dann von den Postsynapsen anderer Nervenzellen empfangen werden. Neben der Übertragung von Erregung können Synapsen auch Informationen speichern.

Die Entstehung von Synapsen

Wie entstehen eigentlich Synapsen, also jene Kontaktstellen, die die Erregungsübertragung von einer Nervenzelle zur anderen ermöglichen? Forschende vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) haben jetzt zusammen mit einem internationalen Team einen entscheidenden Mechanismus aufgedeckt und die Identität der axonalen Transportvesikel aufgeklärt. Die Erkenntnisse liefern wichtige Grundlagen, um künftig die Regeneration von Nervenzellen zu befördern oder auch Alterungsprozessen entgegenzuwirken.

Um die Entstehung von Präsynapsen von Anfang an nachverfolgen zu können, haben die Forschenden in humanen Stammzellen per Genschere CRISPR ein leuchtendes Protein eingebaut und aus den so modifizierten Stammzellen Nervenzellen generiert. Synaptische Vesikel sind jene Membranbläschen, welche die Botenstoffe enthalten und die jede Synapse auf Vorrat anlegt, damit sie elektrische Signale in chemische umwandeln kann. Alle drei Komponenten haben ihre eigenen Gene und bestehen dementsprechend aus unterschiedlichen Eiweißmolekülen. Doch diese Annahme konnten die Forschenden durch ihre Beobachtungen widerlegen. „Die synaptischen Vesikelproteine und die Proteine der sogenannten aktiven Zone ebenso wie die Adhäsionsproteine, die die Synapse zusammenkleben nehmen alle den gleichen Bus“, beschreibt Forschungsgruppenleiter Prof. Dr. Volker Haucke den überraschenden Befund. „Das war sehr umstritten.

In der Arbeit konnten die Forschenden zum einen darlegen, dass für den axonalen Transport eine Maschinerie aus Motorproteinen angeworfen wird. Der Haupttreiber ist demnach das sogenannte Kinesin „KIF1A“. Dieses Motorprotein ist vor allem im Zusammenhang mit neurologischen Störungen im peripheren Nervensystem und im Gehirn bekannt. „Wir vermuten, dass Mutationen in KIF1A den axonalen Transport präsynaptischer Proteine behindern und es so zu neurologischen Symptomen wie Bewegungsstörungen, Ataxie oder geistigen Behinderungen kommt", erläutert Volker Haucke.

Aber auch die zellbiologische Identität des eigentlichen Transportmittels konnten die Forschenden bestimmen. Und wieder gab es eine Überraschung: Während die allermeisten sekretorischen Vesikel aus dem sogenannten Golgi-Apparat stammen, haben diese axonalen Transportvesikel keine Golgi-Markierung, sondern teilen sich Markierungen mit dem endolysosomalen System, das in anderen Zellen den Abbau von defekten Proteinen bewirkt. „Unsere Arbeit legt nahe, dass Neuronen eine Art neue Organelle erfunden haben, eine Transportorganelle, die es wahrscheinlich in dieser Form nur in Nervenzellen gibt“, erläutert Dr. Sila Rizalar, FMP-Postdoc und Erstautorin der in „Science“ publizierten Arbeit.

Lesen Sie auch: Wie Alkohol die Signalübertragung im Gehirn beeinflusst

Axonaler Transport und seine Bedeutung

Wenn die Kontakte zwischen den Nervenzellen kaputtgehen, sei es durch eine Krankheit, einen Unfall oder schlicht durch den Alterungsprozess, ist es wichtig, den Mechanismus des axonalen Transports und die beteiligten Schlüsselproteine zu kennen, um therapeutisch eingreifen zu können. Obwohl die Forschenden nun einen entscheidenden Mechanismus der Synapsenentstehung entschlüsselt haben, sind noch viele Fragen offen. Zum Beispiel, wie die neu entdeckten Transportorganellen eigentlich entstehen, aus was sie gebaut sind oder wie sie ihre Fracht, die Synapsenmoleküle, am Ort ihrer Bestimmung abliefern. Auch steht die Frage im Raum, ob lebenslange Erinnerungen nicht möglicherweise über den gleichen axonalen Transportmechanismus abgespeichert werden, der für die Bildung von Synapsen verantwortlich ist. All diese Fragen will das Team um Volker Haucke nun weiterverfolgen.

Der synaptische Vesikel-Zyklus

Forschende der Universitätsmedizin Göttingen (UMG) und des Okinawa Institute of Science and Technology (OIST) in Japan haben gemeinsam ein Computermodellierungssystem entwickelt, das den gesamten Zyklus - von der Bildung bis zum Recycling - sogenannter Vesikel darstellt. Vesikel sind kleine Bläschen, die Botenstoffe transportieren, die für die Kommunikation zwischen den Nervenzellen essentiell sind. Fehlfunktionen in diesem Zyklus können zur Entstehung neurologischer Erkrankungen führen.

Denken, fühlen, erinnern oder bewegen - diese Prozesse beinhalten die Übertragung von Botenstoffen zwischen den Nervenzellen im Gehirn. Daran beteiligt sind kleine Bläschen, sogenannte Vesikel, die die Botenstoffe durch die Nervenzelle transportieren. An den Synapsen, den Kontaktstellen zwischen den Nervenzellen, setzen die Vesikel die Botenstoffe frei, damit diese mit der gegenüberliegenden Nervenzelle interagieren können, um so die Informationsweiterleitung sicherzustellen. Die Vesikel hingegen werden entweder abgebaut oder für kommende Transporte wiederverwendet. Fehlfunktionen in diesem Prozess können die Entstehung neurologischer Erkrankungen begünstigen. Der Vesikel-Zyklus - von der Bildung bis zum Abbau oder Recycling - ist bisher nicht vollständig geklärt.

Einem internationalen Team von Forschenden um Prof. Dr. Silvio O. Rizzoli, Direktor des Instituts für Neuro- und Sinnesphysiologie der Universitätsmedizin Göttingen (UMG), Sprecher des Center for Biostructural Imaging of Neurodegeneration (BIN) sowie Mitglied des Exzellenzclusters „Multiscale Bioimaging: Von molekularen Maschinen zu Netzwerken erregbarer Zellen“ (MBExC), und Prof. Dr. Erik De Schutter, Leiter der Computational Neuroscience Unit im Okinawa Institute of Science and Technology (OIST) in Japan, ist es gelungen, den vollständigen Vesikel-Zyklus in einem noch nie dagewesenen Detaillierungsgrad am Computer abzubilden. Das neue Modellierungssystem berücksichtigt das komplizierte Zusammenspiel der Vesikel, ihrer zellulären Umgebung, Aktivitäten und Interaktionen, und zeichnet so ein realistisches Bild, wie Vesikel die synaptische Übertragung von Botenstoffen unterstützen. Da das Modell das Verhalten von Vesikeln vorhersagen kann, konnten die Wissenschaftler*innen erstmals überprüfen, wie sich die Vesikel unter hochfrequenten Stimulationsbedingungen verhalten. Eine Situation, weitab der natürlichen Bedingungen, die im Gehirn ablaufen. Das neue Modellierungssystem erweitert somit das Wissen über die Funktionalität von Synapsen und der Funktionsweise des Gehirns. Diese Erkenntnisse könnten als neue Ansatzpunkte für die Behandlung verschiedener neurologischer Erkrankungen dienen.

Der Vesikel-Zyklus beschreibt die Schritte für den Transport der Botenstoffe, auch Neurotransmitter genannt, durch die Nervenzelle bis zur Synapse, der Kontaktstelle zwischen den Nervenzellen. Die Vesikel docken an der synaptischen Membran an, verschmelzen mit dieser und setzen die Neurotransmitter in den synaptischen Spalt frei. Die Vesikel werden anschließend abgebaut oder recycelt. Dieser Prozess wird durch elektrische Stimulationen im Gehirn ausgelöst und durch eine komplexe Informationsweitergabe gesteuert. Je nach Situation müssen unterschiedliche Mengen an Neurotransmittern über unterschiedliche Zeiträume hinweg freigesetzt werden. Um eine kontrollierte und anhaltende synaptische Übertragung zu ermöglichen, stehen nur zehn bis 20 Prozent der Vesikel jederzeit zum Andocken bereit und werden als Recycling-Pool bezeichnet. Die Mehrheit der Vesikel befindet sich hingegen in einem Reservepool.

Lesen Sie auch: Wie Opiate Synapsen beeinflussen

Im Fokus der Studie steht der Vesikel-Recyclingprozess in den Synapsen des Hippocampus, dem Teil des Gehirns, der an der Gedächtnisbildung beteiligt ist. Ziel war es, mit dem Modell sowohl das Verhalten von Vesikeln bei experimentell erzeugten elektrischen Impulsen, die der Informationsweiterleitung dienen, zu untersuchen, als auch bei höheren Frequenzen. Die Forschenden entdeckten, dass der Vesikel-Zyklus bei hohen Stimulationsfrequenzen funktioniert, die weit über das hinausgehen, was normalerweise in der Natur vorkommt. Die Ergebnisse zeigen, dass die Effizienz des Vesikel-Zyklus von der molekularen Bindung abhängt. Durch die physische Verbindung einiger Vesikel mit der Membran mit Hilfe von „Bindegliedern“ könnte ein Vorrat an Vesikeln für das schnelle Andocken und die Freisetzung von Neurotransmittern bereitgestellt werden.

Die Rolle von Neurotransmittern und Vesikeln

Nervenzellen sind miteinander durch Synapsen verbunden, an denen Signale in Form von Botenstoffen übertragen werden. Unser Nervensystem besteht aus etwa 100 Milliarden Nervenzellen, die untereinander vernetzt sind und dadurch zu komplexen Rechenleistungen in der Lage sind. Die Nervenzellen besitzen eine Antennenregion, die durch den Zellkörper und deren Fortsätze (Dendriten) gebildet wird. Die Signale werden dann verrechnet und durch ein „Kabel“, das Axon, in Form von elektrischen Impulsen weitergeleitet. In der Senderregion verzweigt sich das Axon und bildet Kontaktstellen aus, die Synapsen, an denen die Signale auf andere Nervenzellen übertragen werden. Dort werden die aus dem Axon eintreffenden elektrischen Impulse in chemische Signale umgewandelt. Die Information fließt dabei nur in einer Richtung: Eine Zelle redet, die andere hört zu.

Die präsynaptischen Nervenenden enthalten die als Neurotransmitter bezeichneten Signalmoleküle, die in kleinen membranumschlossenen Vesikeln gespeichert sind. Jedes Nervenende im zentralen Nervensystem enthält durchschnittlich mehrere 100 synaptische Vesikel. Dennoch gibt es hier große Unterschiede: So gibt es beispielsweise Spezialisten unter den Synapsen, die mehr als 100.000 Vesikel enthalten. Dazu zählen die Synapsen, die unsere Muskeln steuern.

Wenn ein elektrisches Signal im Nervenende eintrifft, werden Calcium-Kanäle in der Plasmamembran aktiviert, durch die Calcium-Ionen vom Außenraum in das Innere der Synapse strömen. Sie treffen auf eine molekulare Maschine, die sich zwischen der Membran der Vesikel und der Plasmamembran befindet und die durch die hereinströmenden Calcium-Ionen aktiviert wird. Diese Maschine bewirkt, dass die Membran der Vesikel, die sich in der Startposition befinden, mit der Plasmamembran verschmilzt.

Auf der anderen Seite des synaptischen Spaltes treffen die Botenstoffe auf Andockstellen in der Membran des Empfänger-Neurons, die die elektrischen Eigenschaften dieser Membran regulieren. Dadurch ändert sich der Membranwiderstand. Die Empfängerzelle kann die Spannungsänderung, die dadurch entsteht, in einem rasanten Tempo verarbeiten Zwischen dem Eintreffen des Impulses bis zur Spannungsänderung auf der anderen Seite des synaptischen Spalts vergeht nur etwa eine tausendstel Sekunde. Damit stellt die synaptische Übertragung einen der schnellsten biologischen Vorgänge dar.

Lesen Sie auch: Funktionsweise hemmender Synapsen

Die synaptischen Vesikel sind keineswegs nur eine Art membranumhüllte „Konservendose“ zur Speicherung der Botenstoffe. In ihrer Membran befindet sich eine ganze Reihe von Proteinen, die sich seit Millionen von Jahren durch die Evolution kaum verändert haben. Eine Gruppe dieser Proteine, die Neurotransmitter-Transporter, ist dafür verantwortlich, die Botenstoffe aus dem Zellplasma in die Vesikel hineinzupumpen und dort anzureichern. Dazu ist viel Energie erforderlich. Diese wird von einem weiteren Proteinmolekül bereitgestellt, einer Protonen-ATPase (V-ATPase), die unter Verbrauch von Adenosintriphosphat (ATP) Protonen in die Vesikel hineinpumpt. Neben diesen für das „Auftanken“ erforderlichen Proteinen enthalten die Membranen synaptischer Vesikel weitere Komponenten, die dafür sorgen, dass die Vesikel mit der Plasmamembran verschmelzen können (darunter das SNARE-Protein Synaptobrevin und den Calcium-Sensor Synaptotagmin) und nach der Membranfusion wieder in das Nervenende zurücktransportiert werden. Die synaptische Vesikel werden anschließend im Nervenende über einige Zwischenschritte wieder recycelt und neu mit Botenstoffen befüllt.

Molekulare Mechanismen der Vesikelfusion

Der Vorgang dauert nur wenige Millisekunden: Ein Vesikel, gefüllt mit Neurotransmittern und nur ein paar Nanometer groß, nähert sich der Zellmembran, verschmilzt mit ihr und gibt seine Botenstoffe an den synaptischen Spalt ab - sodass sie sich dort an die nächste Nervenzelle heften können. Ein Team um Prof. Christian Rosenmund vom Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) und der Charité - Universitätsmedizin Berlin hat diesen fundamentalen Prozess nun erstmals in Echtzeit sichtbar gemacht.

„Niemand wusste bisher, wie die Fusion der synaptischen Vesikel mit der Zellmembran im Detail abläuft“, sagt die Erstautorin der Studie, Dr. Jana Kroll, die mittlerweile in der Arbeitsgruppe „Strukturbiologie Membran-assoziierter Prozesse“ von Prof. Oliver Daumke am Max Delbrück Center forscht. „In unseren Experimenten mit Mäuse-Neuronen konnten wir zeigen, dass sich zunächst eine punktförmige Verbindung bildet. „Mithilfe der über fünf Jahre hinweg entwickelten Technologie ist es zum ersten Mal gelungen, Synapsen bei der Arbeit zuzusehen, ohne sie dabei zu stören“, ergänzt Christian Rosenmund.

Um die Synapsen in Echtzeit zu beobachten, haben die Forschenden Nervenzellen von Mäusen genutzt, die sie zuvor mithilfe der Optogenetik so verändert hatten, dass die Zellen durch ein Lichtsignal aktiviert werden - und daraufhin sofort beginnen, Neurotransmitter auszuschütten. Innerhalb von ein bis zwei Millisekunden hat das Team die Neuronen dann in minus 180 Grad Celsius kaltem Ethan schockgefroren. Dabei stießen die Wissenschaftler:innen auf ein weiteres interessantes Detail: „Wir konnten erkennen, dass die meisten der fusionierenden Vesikel über kleine Filamente mit mindestens einem weiteren Vesikel verbunden sind - sobald ein Vesikel mit der Zellmembran verschmilzt, steht schon das nächste bereit“, berichtet Jana Kroll.

Die Fusion der Vesikel, die das Team visualisiert hat, findet in unseren Gehirnen jede Minute millionenfach statt. Den Prozess im Detail zu verstehen, ist auch für medizinische Zwecke wichtig: „Bei vielen Menschen mit Epilepsie oder anderen Erkrankungen der Synapsen sind Mutationen in Proteinen bekannt, die an der Vesikelfusion beteiligt sind“, erklärt Christian Rosenmund. „Der vor uns vorgestellte Ansatz für eine zeitaufgelöste Kryo-Elektronenmikroskopie mittels Licht ist zudem nicht auf Neurone beschränkt, sondern lässt sich in vielen Bereichen der Struktur- und Zellbiologie anwenden“ ergänzt Jana Kroll. Sie selbst möchte ihre Experimente jetzt am Max Delbrück Center zunächst mit menschlichen Neuronen wiederholen, die sie aus Stammzellen gewinnt.

Die synaptische Übertragung im Detail

Im menschlichen Körper werden ständig Reize weitergeleitet und verarbeitet. Reize, die man auch Erregungen nennt, können beispielsweise durch die Sinneseindrücke (sehen, riechen, fühlen, schmecken, hören) entstehen. Diese werden von ihrem Entstehungsort (z.B. dem Finger) bis zum Gehirn transportiert. Dafür nutzt der Körper sogenannte Nervenzellen, die an Ihren Enden die Synapsen aufweisen. Diesen kommt die spezielle Aufgabe zu, den jeweiligen Reiz an die nächste Zelle zu übergeben.

Die Synapse ist das Verbindungsstück einer Nervenzelle zu einer anderen Zelle. Dies kann wiederum eine Nervenzelle sein, aber auch eine ganz andere wie zum Beispiel Muskel- oder Sinneszellen. Die Synapsen sorgen für die Erregungsweiterleitung durch die Umwandlung von elektrischen Informationen in chemische Informationen. Diese Synapse wird daher auch chemische Synapse genannt. Die Übertragung der Erregung wird mittels chemischer Botenstoffen, den sogenannten Neurotransmittern, realisiert. Dabei läuft die Weiterleitung der Reize immer nur in eine Richtung ab. Chemische Synapsen kommen im Nervensystem von Säugetieren vor und damit auch beim Menschen.

Der Auslöser für die Reaktionen der Synapse ist ein Aktionspotenzial, das vom Axon kommt und die Membran des synaptischen Endknöpfchen depolarisiert. Dieses elektrische Signal hat zur Folge, dass spannungsgesteuerte Calcium-Ionenkanäle geöffnet werden und Calciumionen (Ca2+) einströmen. Das Calcium bewirkt, dass Vesikel, die mit Neurotransmitter (Acetylcholin) gefüllt sind, mit der präsynaptischen Membran verschmelzen und die Transmitter in den synaptischen Spalt ausschütten. Diese diffundieren zur postsynaptischen Membran und binden sich an spezifischen Rezeptoren von Ionenkanälen (z.B. Natriumionenkanäle). Diese Kanäle sind nicht spannungsgesteuert wie die Kanäle auf der präsynaptischen Membran oder die auf dem Axon, sondern ligandengesteuert (Neurotransmitter werden auch Liganden genannt).

Durch die geöffneten Ionenkanäle strömen nun beispielsweise Natrium-Ionen (Na+) ein und es kommt zu einer Depolarisation der postsynaptischen Membran. Ein Aktionspotenzial entsteht und wird weitergeleitet. Die Frequenz und Stärke des Aktionspotenzials hängt von der Konzentration des Neurotransmitters, im synaptischen Spalt, ab. Durch eine hohe Frequenz, die bei der Membran des synaptischen Endknöpfchen ankommt, wird auch eine hohe Transmitterkonzentration im synaptischen Spalt erreicht und es kommt zu einer entsprechend höheren Frequenz von Aktionspotenzialen auf der postsynaptischen Membran.

Solange Acetylcholin im synaptischen Spalt vorhanden ist, findet die Reizweitergabe statt. Das Enzym Cholinesterase baut den Neurotransmitter ab, indem es ihn in seine Bestandteile Acetat und Cholin spaltet, und stoppt so die Weitergabe der Erregung. Acetat und Cholin werden zur präsynaptischen Membran zurückgeführt, wieder im Endknöpfchen aufgenommen und durch das Enzym Cholinacetyltransferase zu Acetylcholin verbunden. Es steht für die nächste Erregungsweiterleitung zur Verfügung.

Synapsen im Kleinhirn und motorische Kontrolle

Auch wenn man nicht darüber nachdenkt, benutzt man jeden Tag die komplizierten Schaltkreise der Neuronen in Gehirn, um erstaunlich feine Bewegungen mit dem Körper auszuführen. Das Kleinhirn spielt dabei eine Schlüsselrolle bei feinmotorischer Kontrolle, Koordination und Timing.

In einer neuen Studie, die jetzt in der Fachzeitschrift Neuron veröffentlicht wurde, haben die Wissenschafter:innen - unter der Leitung der Doktorandin Jingjing Chen aus Jonas Forschungsgruppe und Walter Kaufmann von der Electron Microscopy Facility des ISTA mit maßgeblicher Unterstützung von ISTA-Professor Ryuichi Shigemoto - einige der zentralen Mechanismen in den Synapsen des Kleinhirns entschlüsselt.

Die Purkinje-Zellen im Kleinhirn bilden ein Nadelöhr für die Signale der motorischen Steuerung. Aber viele Aspekte, wie dies auf molekularer und zellulärer Ebene geschieht, waren bisher unklar. In ihrer Studie haben die Forscher:innen nun die Details der hemmenden Synapsen dieser Zellen erklärt. Die Wissenschafter:innen verwendeten subzelluläres Patch-Clamp-Recording, das von einer fortschrittlichen Mikroskopietechnik, der so genannten konfokalen Bildgebung, unterstützt wurde, um die Funktion dieser Synapsen im Detail zu studieren. Parallel dazu untersuchten sie mit Hilfe von Elektronenmikroskopie die Struktur der Synapsen mit der höchstmöglichen Auflösung. Einige der Zellteile sind nur wenige Nanometer - Millionstel eines Millimeters - groß. Chen und ihre Kolleg:innen maßen verschiedene Parametern der Synapsen, beispielsweise wo und wie oft Neurotransmitter freigesetzt werden, sowie die Größe der winzigen Bläschen, welche die Neurotransmitter enthalten, um ein Computermodell des gesamten Prozesses zu erstellen. Sie führten ihre Untersuchungen mit Neuronen aus Gehirnen von Mäusen in verschiedenen Altersstufen durch, um ihre Entwicklung im Laufe der Zeit zu verstehen.

Mit ihrem Computermodell, das die Vorgänge in verschiedenen Entwicklungsstadien vom frühen bis zum erwachsenen Alter simuliert, konnten die Wissenschafter:innen sehen, wie die hemmenden Synapsen der Purkinje-Zellen im Kleinhirn die Ausgangssignale der Zelle beeinflussen und so die Feinsteuerung der motorischen Fähigkeiten ermöglichen.

Entwicklung und Struktur von Synapsen

„Wir haben festgestellt, dass im frühen Alter alle Mechanismen in der Synapse ziemlich zufällig organisiert sind und in ihren Funktionen nicht so genau sind“, erklärt Kaufmann, der vor etwa zehn Jahren als einer der ersten Staff Scientists ans ISTA kam, die Ergebnisse. „Mit zunehmender Reifung der Neuronen wird die Synapse strukturierter, nähert sich einer viel genaueren Konfiguration an und erreicht dadurch ein höheres Maß an funktioneller Präzision.“

Das Verständnis dieser Art von Synapsen ist nicht nur ein spannendes Unterfangen für die Grundlagenforschung, sondern könnte Forscher:innen in Zukunft sogar helfen, neurologische Krankheiten zu verstehen, deren Ursache in einer Fehlfunktion von Synapsen im Gehirn vermutet wird.

tags: #detaillierte #ansicht #synapsen