Das Gehirn ist ein bemerkenswert komplexes und anpassungsfähiges Organ, dessen Funktionsweise von einer Vielzahl von Enzymen abhängt. Diese Enzyme spielen eine entscheidende Rolle bei der Steuerung der neuronalen Plastizität, der synaptischen Homöostase, des Fettstoffwechsels und des Schutzes vor neurodegenerativen Erkrankungen wie Alzheimer. Die vorliegende Übersichtsarbeit beleuchtet die vielfältigen Funktionen von Enzymen im Gehirn und ihre Auswirkungen auf Lernen, Gedächtnis und die allgemeine Gesundheit des Gehirns.
Neuronale Plastizität und extrazelluläre Matrix
Damit ein Lebewesen lernen kann, muss sein Gehirn plastisch sein. Das heißt, die Nervennetzwerke müssen sich verändern können. Die Anpassungsfähigkeit des Gehirns nimmt jedoch mit zunehmendem Alter ab, da sich neue Verknüpfungen zwischen Nervenzellen im Gehirn weniger leicht bilden. Die Plastizität des Gehirns wird geringer. Damit sich ein Gehirn umorganisieren kann, zum Beispiel, um zu lernen, oder um Verletzungen des zentralen Nervensystems wie nach einem Schlaganfall zu kompensieren, muss ein dichtes Molekülnetzwerk zwischen den Nervenzellen - die sogenannte extrazelluläre Matrix - gelockert werden. Dies ist die Aufgabe verschiedenster Enzyme, die letztlich regeln, wie plastisch oder stabil das Gehirn ist. Wichtig hierfür sind Makromoleküle der extrazellulären Matrix, die sich zwischen den Nervenzellen befinden. Im Laufe des Lebens nimmt die „Festigkeit“ dieser extrazellulären Matrix zu, wodurch vermutlich die bestehenden Verbindungen zwischen den Nervenzellen stabilisiert werden und Erlerntes verfestigt wird. Wird nun eine neue Erfahrung gemacht, muss die extrazelluläre Matrix wieder gelockert werden, damit neue Verknüpfungen entstehen können. Dieses Verhältnis von Stabilität und Plastizität im Gehirn wird in der Matrix mithilfe von Enzymen wie beispielsweise Matrixmetalloproteinasen (MMPs) geregelt, die die extrazelluläre Matrix aufspalten und damit „lockern“ können.
Ein Team der Universität Göttingen konnte jetzt in einer neuen Studie zeigen, dass die Blockade der Matrixmetalloproteinasen MMP2 und MMP9 unterschiedliche Effekte haben kann, je nachdem, ob das Gehirn krank oder gesund ist. Um die neuronale Plastizität zu messen, ließen die Wissenschaftlerinnen erwachsene Mäuse für mehrere Tage nur über ein Auge sehen und registrierten die daraus resultierenden Aktivitätsänderungen in der Sehrinde der Tiere. In einem ersten Experiment untersuchten sie die Anpassungsfähigkeit der Sehrinde gesunder Mäuse, bei denen die Enzyme MMP2 und MMP9 blockiert wurden (mit SB3CT). In der Folge war auch die neuronale Plastizität blockiert. In einem zweiten Experiment forschte das Team an Mäusen unmittelbar nach einem Schlaganfall. Es war bereits bekannt, dass Schlaganfälle kurzfristig zu einem starken Anstieg der MMPs führen. Und hier erzeugte die gezielte, kurzfristige Blockade der Enzyme MMP2 und MMP9 einen gegenteiligen Effekt: Die durch den Schlaganfall stark reduzierte Plastizität wurde wiederhergestellt, die Blockade der Enzyme MMP2 und MMP9 hatte somit eine klare therapeutische Wirkung. „Anders als in vielen anderen Studien wurden bei unserem Studienaufbau die ,matrixabbauenden‘ Enzyme erst nach dem experimentellen Schlaganfall blockiert, wodurch eine Behandlung simuliert wurde“, sagt Prof. Dr. Siegrid Löwel von der Abteilung für Systemische Neurobiologie der Universität Göttingen. „Wir zeigen zudem, dass die MMPs im Gehirn sehr gut überwacht und exakt eingestellt werden müssen.
Schutzmechanismen gegen Alzheimer: Die Rolle der Alpha-Sekretase
In einer institutsübergreifenden Kooperation ist es Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) gelungen, weitere Einsichten in die körpereigenen Schutzmechanismen gegen die Alzheimer-Erkrankung zu gewinnen. Dabei zeigte sich, dass die enzymatische Aktivität der Alpha-Sekretase maßgeblich für die protektive Wirkung verantwortlich ist. "Wir haben früher schon festgestellt, dass das Enzym Alpha-Sekretase dazu beiträgt, die typischen Plaques-Ablagerungen im Gehirn zu verhindern und die Gehirnleistungen wie das Lern- und Erinnerungsvermögen zu verbessern", teilte Prof. i.R. Dr. Falk Fahrenholz vom Institut für Biochemie mit. Seine Arbeitsgruppe ist vor diesem Hintergrund zusammen mit der Klinik für Psychiatrie und Psychotherapie der Universitätsmedizin sowie der Zentralen Versuchstiereinrichtung ZVTE den Ursachen für diese günstigen Eigenschaften der Alpha-Sekretase nachgegangen. Alpha-Sekretase ist ein körpereigenes Enzym, das im Gehirn in den Nervenzellen vorkommt und dort einen bestimmten Eiweißstoff spaltet. Dabei entsteht ein lösliches Protein-Fragment, das das Wachstum von Nervenzellen fördert und so der Gehirn-Erkrankung vorbeugt. Wird dagegen das Enzym Beta-Sekretase aktiv, dann nimmt eine Reaktionskette ihren Lauf, die schließlich zu der Alzheimer-Erkrankung mit dem meist vollständigen Gedächtnisverlust führt. "Die Alpha-Sekretase ist sozusagen das schützende Enzym, die Beta-Sekretase das schlechte", so Fahrenholz. Zu diesem Zweck haben die Kooperationspartner untersucht, ob der positive Effekt der Alpha-Sekretase auf seiner enzymatischen Aktivität beruht oder ob andere Eigenschaften des Enzyms für die Schutzwirkung verantwortlich sind.
Enzyme oder Fermente spielen im gesamten Stoffwechsel eine wichtige Rolle, weil sie zahlreiche biochemische Vorgänge steuern, regulieren oder beschleunigen. "Die Alpha-Sekretase ist ein sehr komplexes Enzym mit vielen anderen Funktionen. Es übermittelt beispielsweise auch Signale aus dem Zellzwischenraum in die Zelle hinein und interagiert mit Molekülen auf anderen Zellen." Fahrenholz und seine Kollegen haben bei ihren Untersuchungen an transgenen Mäusen nun festgestellt, dass allein die enzymatische Aktivität die Schutzfunktionen garantiert. Wird diese Aktivität abgeschaltet, zeigen die Labor-Mäuse genau die Defizite, die für die Alzheimer-Krankheit so typisch sind: verminderte Lernfähigkeit, schlechte Gedächtnisleistung und Ablagerung von Plaques. Die enzymatische Aktivität der Alpha-Sekretase könnte also ein Ansatzpunkt für künftige Therapien darstellen. Gleichzeitig konnten die Wissenschaftler in ihren Experimenten bestätigen, dass nicht die Plaques-Ablagerungen selbst für die nachlassende Gedächtnisleistung verantwortlich sind. In den Plaques sammeln sich nur die zellschädigenden Stoffe, die in Lösung die Synapsen der Nervenzellen zerstören. "Es ist wichtig, dass man nicht nur die Plaques im Auge hat, sondern vor allem ihre Vorstufen genau betrachtet, die die eigentlichen Verursacher der Krankheit sind", so Fahrenholz.
Lesen Sie auch: Dopaminspaltung: Ein Überblick
ADAM10: Ein Schlüsselenzym im Kampf gegen Alzheimer
Wie eine Schere kann man sich das Enzym ADAM10 vorstellen: In den Nervenzellen des Gehirns knüpft es sich ein bestimmtes Protein vor, das es schneidet - diese „enzymatische Spaltung“, wie der Schnitt in der Fachsprache heißt, ist ein wichtiger Teil des Schutzmechanismus vor Alzheimer. ADAM10 gehört zur Familie der Alpha-Sekretasen und hat indirekt mit Amyloid zu tun - jener Substanz, die sich im Gehirn von Alzheimer-Patienten ablagert und eine entscheidende Rolle bei der Entstehung der Krankheit spielt. Dieses Amyloid entsteht in Nervenzellen aus einem Vorläuferprotein namens APP (amyloid precursor protein). Wird dieses APP geschnitten, kann Amyloid entstehen - muss aber nicht: Ein Teil der APP-Proteine wird von BACE1 weiterverarbeitet; in diesem Fall entsteht am Ende eines komplexen Prozesses Amyloid. Ein anderer Teil der APP-Proteine wird aber nicht von BACE1, sondern von ADAM10 geschnitten. Alle diese Prozesse laufen ganz natürlich bei jedem Menschen ab. Entscheidend ist, dass die Balance gewahrt bleibt: Üblicherweise kommt der Körper mit dem entstehenden Amyloid zurecht. Ein Problem entsteht nur, wenn zuviel Amyloid gebildet wird. In manchen Fällen geschieht das, wenn BACE1 hyperaktiv ist. Es kann aber auch passieren, dass ADAM10 nicht ausreichend arbeitet: Dann verarbeitet es zu wenig APP, das in der Folge auch zu Amyloid werden. Es gibt Gen-Mutationen, die dazu führen, dass ADAM10 in der Aktivität nachlässt oder sogar ganz ausfällt.
ADAM10 ist allerdings nicht nur ein Schutzfaktor vor der Bildung von Amyloid, sondern hat generell für die Gehirn-Entwicklung eine entscheidende Bedeutung. Für Alzheimer arbeitet die Forschung an Medikamenten, mit denen sich ADAM10 künstlich stimulieren lässt. Denkbar ist ihr Einsatz in zwei Fällen: Erstens dann, wenn ADAM10 zu wenig arbeitet. Und zweitens auch dann, wenn BACE1 hyperaktiv ist und zu viel Amyloid bildet. In diesem Fall könnte eine erhöhte ADAM10-Aktivität das gestörte Gleichgewicht wieder herstellen. Es wird sogar darüber spekuliert, dass eine hohe Aktivität von ADAM10 kognitive Defizite kompensieren könnte, die bereits bestehen. Es ist also denkbar, dass es nicht nur in der Prävention eine Rolle spielt, sondern sogar zur Heilung beitragen kann. In einem Mausmodell ist genau das bereits gelungen. Das Kürzel ADAM steht für den englischen Fachbegriff „a disintegrin and metalloproteinase“. Als Metalloproteasen werden Enzyme bezeichnet, die für ihre Aufgabe - das Schneiden von Proteinen - ein Metall-Ion als Katalysator benötigen. Im Fall von ADAM10 ist das Zink. Es gibt aber nicht nur diese eine Metalloprotease: Eine ganze Familie von ADAM-Proteinen ist in der Forschung bekannt, sie besteht aus fast zwei Dutzend Mitgliedern, die jeweils eine Nummer tragen.
Synaptische Homöostase und RIM1
Fast 100 Milliarden Nervenzellen verrichten im menschlichen Gehirn ihren Dienst. Jede davon verfügt im Schnitt über 1.000 Kontakte zu anderen Neuronen. Allerdings sind Synapsen weit mehr als eine simple Verdrahtung. Das lässt sich schon an ihrem Aufbau ablesen: Sie bestehen aus einer Art Sendevorrichtung, der Präsynapse, und einer Empfänger-Struktur, der Postsynapse. Dazwischen liegt der synaptische Spalt. Dieser ist zwar sehr schmal. Dennoch verhindert er, dass die elektrischen Impulse einfach weitergeleitet werden können. Dazu wird die Präsynapse durch eingehende Spannungspulse dazu bewegt, bestimmte Botenstoffe auszuschütten. Diese durchqueren den synaptischen Spalt und docken auf der postsynaptischen Seite an bestimmten „Antennen“ an. Dadurch lösen sie in der Empfängerzelle ebenfalls elektrische Pulse aus. „Wieviel Neurotransmitter die Präsynapse freisetzt und wie stark die Postsynapse darauf reagiert, wird jedoch im Gehirn strikt reguliert“, erklärt Prof. Dr. So werden beim Lernen bestimmte Synapsen gestärkt: Schon ein schwacher elektrischer Reiz des Sender-Neurons reicht dann aus, um in der Empfängerzelle eine starke Antwort auszulösen. Wenig genutzte Synapsen verkümmern dagegen. Zusätzlich verhindern ausgeklügelte Kontrollmechanismen, dass sich die elektrische Aktivität im Gehirn zu stark ausbreiten kann - oder im Gegenteil zu schnell wieder versiegt. „Wir sprechen auch von synaptischer Homöostase“, erklärt Prof. Dr. Dirk Dietrich von der Klinik für Neurochirurgie am Universitätsklinikum. Welche Prozesse dieses Gleichgewicht aufrechterhalten, ist bislang aber erst in Teilen verstanden. Ein Mechanismus, mit dem das Gehirn auf langanhaltende Veränderungen der neuronalen Aktivität reagiert, ist die sogenannte homeostatische Plastizität. „Wir konnten nun zeigen, dass ein Protein namens RIM1 eine Schlüsselrolle in diesem Prozess spielt“, sagt Schoch McGovern. Wie jedes Protein besteht RIM1 aus einer großen Zahl aneinanderhängender Aminosäuren. Die Forschenden haben nun nachgewiesen, dass manche dieser Aminosäuren durch ein Enzym mit einer chemischen Verbindung verknüpft werden, einer Phosphatgruppe. Je nachdem, welche Aminosäure so modifiziert wird, kann die Präsynapse danach mehr oder auch weniger Botenstoff freisetzen. Die Phosphatgruppen bilden sozusagen das „Gedächtnis“ der Synapsen, mit dem diese das aktuelle Aktivitätsniveau in Erinnerung behalten.
„In der Präsynapse stehen transmittergefüllte Bläschen wie die Pfeile eines gespannten Bogens zum Abschuss bereit“, sagt Dietrich. „Sobald ein Spannungspuls einläuft, werden sie blitzschnell freigesetzt. Kann die Präsynapse dadurch mehr Bläschen „verschießen“, wird ihr Ruf über den synaptischen Spalt bildlich gesprochen lauter. Nimmt dagegen die Zahl der Bläschen durch Veränderungen im Phosphorylierungsstatus von RIM1 stark ab, ist der Ruf kaum noch hörbar. „Welcher Effekt eintritt, hängt von der phosphorylierten Aminosäure ab“, sagt Dr. Johannes Alexander Müller aus der Arbeitsgruppe von Schoch McGovern. Er teilt sich mit seiner Kollegin Dr. Über RIM1 kann das Gehirn die Aktivität einzelner Synapsen also vermutlich sehr genau einstellen. Eine weitere Schlüsselrolle spielt dabei das Enzym SRPK2: Es hängt die Phosphatgruppen an die Aminosäuren von RIM1. Daneben gibt es aber noch weitere Akteure - zum Beispiel Enzyme, die die Phosphatgruppen im Bedarfsfall wieder entfernen. Das synaptische Gleichgewicht ist immens wichtig; ist es gestört, können Krankheiten wie die Epilepsie, aber möglicherweise auch Schizophrenie oder Autismus die Folge sein. Interessanterweise ist die Erbinformation für RIM1 bei Menschen mit diesen psychischen Störungen oft verändert. Damit ist das RIM1-Protein bei ihnen eventuell weniger funktionsfähig. „Wir wollen diese Zusammenhänge nun weiter aufklären“, sagt Schoch McGovern, die auch Mitglied im Transdisziplinären Forschungsbereich „Leben und Gesundheit“ ist.
DNA-Methylierung und Gedächtnis
Es wird allgemein angenommen, dass eine schnelle und reversible DNA-Methylierung im Gehirn für die Stabilität des Langzeitgedächtnisses wesentlich ist, aber es ist nur sehr wenig darüber bekannt, wie synaptische Signale die DNA-Methylierung steuern können, um dauerhafte Veränderungen in der plastizitätsbezogenen Genexpression hervorzurufen. Eine neue Studie der Gruppe von Michael R. Kreutz am Leibniz-Institut für Neurobiologie Magdeburg (LIN) zeigt einen Mechanismus auf, wie die Aktivität von Synapsen die Stabilität und Menge an DNA-methylierendem Enzym kontrolliert. Der genetische Code in unserer DNA ist nicht „in Stein gemeißelt“ sondern durch biochemische Prozesse veränderbar. Dieses Phänomen nennt man Epigenetik. Die DNA-Methylierung ist die wichtigste und am besten untersuchte epigenetische Modifikation der DNA. Die Forschung hat gezeigt, dass sich die DNA-Methylierung auf die Feinabstimmung der Genexpression auf die neuronale Aktivität im Gehirn auswirkt. DNMT3A1 ist das primäre Enzym im erwachsenen Gehirn, das die DNA neu methyliert. Wie wird dieses Enzym reguliert, um passgenaue epigenetische Signaturen in der DNA zu setzen?
Lesen Sie auch: Synaptische Enzymaktivität
Neuronaler Mechanismus schafft Kontrolle
Die Autoren der Studie haben einen Mechanismus entdeckt, der die synaptische Kontrolle der DNMT3A1-Spiegel in Neuronen ermöglicht. Dadurch entsteht ein aktivitätsabhängiges Zeitfenster für eine reduzierte DNA-Neu-Methylierung an einer Gruppe von Zielgenen. Um das Enzym zielgerichtet abzubauen, wird es mit einem Marker, einer sogenannten Neddylierung, biochemisch gekennzeichnet. Das geschieht beispielsweise, wenn Mäuse lernen, sich an die exakte Platzierung von Objekten in einer Arena zu erinnern. Wenn dieser Neddylierungs-Prozess blockiert wird, sind Synapsen weniger plastisch und die Mäuse haben ein deutlich schlechteres Erinnerungsvermögen. „Wir wollten wissen, wie Synapsen DNA-Methylierung steuern können und warum der kontrollierte Abbau des DNA-Methylierungsenzyms so wichtig für das Gedächtnis ist. Wir fanden heraus, dass eines der Target-Gene der Plastizitätsfaktor BDNF ist, der speziell für solche räumlichen Lern- und Gedächtnisprozesse eine zentrale Rolle spielt“, erklärt Erstautorin Gonca Bayraktar. „Diese Befunde sind spannend, weil bekannt ist, dass Störungen in der DNA-Methylierung auch eine Begleiterscheinung neuropsychiatrischer Erkrankungen wie Schizophrenie oder Depression sind, und dass das BDNF-Genprodukt auch bei diesen Krankheiten stark reduziert ist“.
Enzymaktivität und Essstörungen
Eine Gruppe von Forschenden der Universitäten Köln und Münster sowie der Yale University (USA) hat einen völlig neuen Ansatz zur Behandlung von Essstörungen gefunden. Die Wissenschaftlerinnen und Wissenschaftler haben nachgewiesen, dass eine Gruppe von Nervenzellen im Hypothalamus (sogenannte AgRP, agouti-related peptide-Neurone) die Freisetzung körpereigener Lysophospholipide kontrollieren, die wiederum die Erregbarkeit von Nervenzellen in der Hirnrinde steuern, was die Nahrungsaufnahme stimuliert. Dabei wird der entscheidende Schritt dieses Signalweges durch das Enzym Autotaxin kontrolliert, das im Gehirn für die Herstellung der Lysophosphatidsäure (LPA) als ein Modulator der Netzwerkaktivität verantwortlich ist. Die Gabe von Autotaxin-Hemmern kann dabei im Tiermodell sowohl die bekannte übermäßige Nahrungsaufnahme nach Fasten als auch Übergewicht deutlich reduzieren.
Tatsächlich hat das Forschungsteam bei Menschen mit einem gestörten synaptischen LPA-Signalweg eine erhöhte Rate an Übergewichtigkeit und dem damit einhergehenden Diabetes Typ II gefunden. Eine Gruppe um Prof. Johannes Vogt (Medizinische Fakultät der Universität zu Köln), Prof. Robert Nitsch (Medizinische Fakultät der Universität Münster) und Prof. Tamas Horvath (Yale School of Medicine, New Haven/USA) hat jetzt gezeigt, dass die Steuerung der Erregbarkeit von Nervenzellen in der Hirnrinde durch LPA eine wesentliche Rolle bei der Kontrolle des Essverhaltens spielt: AgRP-Neurone kontrollieren die Menge des Lysophosphatidylcholin (LPC) im Blut. Durch aktiven Transport gelangt das LPC ins Gehirn, wo es vom Enzym Autotaxin (ATX) in das an der Synapse aktive LPA umgewandelt wird. Synaptische LPA-Signale führen zu einer Stimulation von spezifischen Netzwerken im Gehirn und so zu erhöhter Nahrungsaufnahme. Nach einer Fastenperiode im Mausmodell führte ein Anstieg des LPC im Blut zu einer Erhöhung des die Erregung stimulierenden LPA im Gehirn. Diese Mäuse zeigten ein typisches Suchverhalten nach Nahrung. Beides konnte durch die Gabe von Autotaxin-Hemmern normalisiert werden. Adipöse Mäuse wiederum verloren bei einer andauernden Gabe dieser Hemmstoffe nachhaltig an Gewicht. Johannes Vogt erklärt: „Wir haben über Genmutation und pharmakologische Hemmung von ATX eine deutliche Reduktion von übermäßiger Nahrungsaufnahme und Übergewicht zeigen können. Unsere grundlegenden Befunde zur LPA gesteuerten Erregbarkeit des Gehirns, die wir über Jahre erarbeitet haben, spielen also auch für das Essverhalten eine zentrale Rolle“. Robert Nitsch verbindet mit den Befunden eine wichtige therapeutische Perspektive hin zu einer neuen Medikamentenentwicklung: „Tatsächlich zeigen die Daten, dass Menschen mit einem gestörten synaptischen LPA-Signalweg vermehrt übergewichtig sind und unter Diabetes Typ II leiden.
Fettstoffwechsel und neuronale Stammzellen
Neurale Stammzellen sind nicht nur für die frühe Gehirnentwicklung verantwortlich, sie bleiben ein Leben lang aktiv. Sie teilen sich und bilden laufend neue Nervenzellen und ermöglichen es dem Gehirn, sich kontinuierlich an neue Anforderungen anzupassen. Verschiedene genetische Veränderungen beeinträchtigen die Aktivität neuraler Stammzellen und führen so bei betroffenen Menschen zu einer eingeschränkten Lern- und Gedächtnisleistung. Ein internationales Forschungsteam unter der Leitung von Sebastian Jessberger, Professor am Institut für Hirnforschung der Universität Zürich (UZH), zeigt nun erstmals in einer publizierten Studie, dass ein Enzym des Fettstoffwechsels die lebenslange Aktivität von Stammzellen im Gehirn reguliert. Dieses Enzym, die sogenannte Fettsäuresynthase (FASN), ist für die Bildung von Fettsäuren zuständig.
Sowohl in der Maus als auch im menschlichen Gewebe führte die FASN-Mutation zur verminderten Teilung von Stammzellen, die laufend neue Nervenzellen bilden. Verantwortlich dafür ist die Überaktivität des mutierten Enzyms: Dadurch sammeln sich Fette im Zellinnern an, was die Stammzellen unter Stress setzt und ihre Teilungsfähigkeit reduziert. Ähnlich wie die kognitiven Einbußen betroffener Menschen zeigten auch die Mäuse aufgrund der Mutation Lern- und Gedächtniseinschränkungen. Der nun identifizierte Mechanismus zeigt, wie der Fettstoffwechsel die Aktivität neuronaler Stammzellen reguliert und damit die Gehirnentwicklung beeinflusst. „Nur die Verknüpfung von Forschung im Tiermodell und an menschlichen Zellen hat die neuen Erkenntnisse über Lern- und Gedächtniseinschränkungen beim Menschen ermöglicht“, betont Jessberger.
Lesen Sie auch: ACE-Enzym in neurologischen Erkrankungen