Das menschliche Nervensystem: Anatomie und Physiologie

Das Nervensystem ist ein komplexes Netzwerk, das die Grundlage für die Kommunikation und Steuerung im menschlichen Körper bildet. Es ermöglicht uns, unsere Umwelt wahrzunehmen, auf sie zu reagieren und lebenswichtige Körperfunktionen zu regulieren. Dieser Artikel beleuchtet die Anatomie und Physiologie des Nervensystems, seine Bestandteile und ihre jeweiligen Funktionen.

Einführung in das Nervensystem

Das Nervensystem umfasst alle Nervenzellen des menschlichen Körpers. Dank des ständigen Austausches vieler Milliarden Nervenzellen koordiniert es sämtliche Körperfunktionen und ermöglicht uns, unsere Umwelt wahrzunehmen. Erstaunlicherweise erfolgt die Arbeit des Nervensystems dabei immer nach demselben Prinzip: dem elektrischen Impuls. Dieser dient nicht nur der Reizwahrnehmung, sondern auch der Reizverarbeitung und Reizweiterleitung (z. B. motorische Befehle an die Muskeln). Mit ihm kommuniziert der Körper mit der Umwelt und steuert gleichzeitig vielfältige Mechanismen im Inneren. Das Nervensystem nimmt Sinnesreize auf, verarbeitet sie und löst Reaktionen wie Muskelbewegungen oder Schmerzempfindungen aus. Wer zum Beispiel auf eine heiße Herdplatte fasst, zieht die Hand reflexartig zurück - und die Nervenbahnen senden gleichzeitig ein Schmerzsignal ans Gehirn.

Bestandteile des Nervensystems

Das Nervensystem enthält viele Milliarden Nervenzellen, sogenannte Neuronen. Allein im Gehirn sind es rund 100 Milliarden. Jede einzelne Nervenzelle besteht aus einem Körper und verschiedenen Fortsätzen. Die kürzeren Fortsätze (Dendriten) wirken wie Antennen: Über sie empfängt der Zellkörper Signale, zum Beispiel von anderen Nervenzellen. Die Nervenzellen sind die Bausteine unseres Nervensystems. Sie besitzen einen Zellkörper und Zellfortsätze, die sie mit anderen Nervenzellen oder mit Körperzellen, wie beispielsweise Muskel- oder Drüsenzellen, verbinden. Diese Fortsätze werden als Axone und Dendriten bezeichnet. Axone leiten Signale zu anderen Neuronen oder Zielzellen weiter, während Dendriten die Signale meistens von anderen Neuronen empfangen. Die Länge der Axone und Dendriten reicht von wenigen tausendstel Millimeter bis zu über einem Meter. Neben den Neuronen enthält das Nervensystem Gliazellen und ein dichtes Netz von Blutgefäßen, das die ausreichende Zufuhr von Sauerstoff und Nährstoffen sicherstellt.

Zentrales Nervensystem (ZNS)

Nach der Lage der Nervenbahnen im Körper unterscheidet man zwischen einem zentralen und einem peripheren Nervensystem. Das zentrale Nervensystem (ZNS) umfasst Nervenbahnen in Gehirn und Rückenmark. Es befindet sich sicher eingebettet im Schädel und dem Wirbelkanal in der Wirbelsäule. Unser Gehirn und das Rückenmark bilden gemeinsam das zentrale Nervensystem, kurz ZNS. Bei Betrachtung der Gewebestruktur ist zu erkennen, dass sowohl Gehirn als auch Rückenmark aus einer grauen und weißen Substanz bestehen. Die graue Substanz, die vor allem aus Nervenzellkörpern besteht, befindet sich in der Großhirnrinde (Kortex) und im schmetterlingsförmigen Teil des Rückenmarks. Sie dient der Reizaufnahme und Reizverarbeitung. Die weiße Substanz bildet im Gehirn das innenliegende Gewebe aus Nervenfasern (Axone). Hier sind Nervenzellen durch millionenfache Verbindungen verschaltet und für die Reizweiterleitung verantwortlich. Als Kontroll- und Schaltzentrale ist das zentrale Nervensystem für uns lebenswichtig, denn es steuert die bewusste Koordination der Bewegung (Motorik), vermittelt Nachrichten aus der Umwelt oder unserem Körperinneren und reguliert das Zusammenspiel aller Körpersysteme (Atmung, Hormonhaushalt, vegetatives und peripheres Nervensystem, innere Organe, Herz-Kreislauf-System, Muskulatur). Darüber hinaus ermöglicht uns das zentrale Nervensystem komplexe Funktionen wie Gedächtnis (Lernen, Erinnerung), Bewusstsein, Gefühle, Verstand und Vernunft.

Gehirn

Das Gehirn wird orientierungsweise in 5 größere Abschnitte unterteilt. Dies sind das Großhirn, das Zwischenhirn, das Mittelhirn, das Kleinhirn und das Nachhirn. Umgeben ist das Gehirn von 3 Hautschichten. Die äußere Hülle (harte Hirnhaut) ist innen mit den Schädelknochen fest verbunden. Zwischen der inneren und der mittleren Haut befindet sich Flüssigkeit, die bei Erschütterungen wie eine Art Stoßdämpfer wirkt und somit zum Schutz des Gehirns beiträgt. Im Inneren des Gehirns befinden sich 4 Hohlräume (Hirnkammern), die mit Gehirnflüssigkeit gefüllt sind. Etwa 1.400 Gramm wiegt unser Gehirn. Dabei ist das Gehirn von Männern im Durchschnitt etwas größer und schwerer als das von Frauen, wobei dieser Größenunterschied keine unmittelbaren Rückschlüsse auf geistige Merkmale wie die Intelligenz zulässt. Das Älterwerden geht nicht spurlos an unserem Gehirn vorüber. Das Großhirn, dessen Entwicklung den Menschen mit all seinen einzigartigen und vielfältigen Fähigkeiten erst ermöglicht, nimmt 80% der Hirnmasse ein. Es besteht aus einer rechten und einer linken Großhirnhälfte, die durch einen breiten und dicken Nervenstrang (den „Balken“) miteinander verbunden sind. Die äußere Schicht des Großhirns bildet die Großhirnrinde. Sie ist 2 bis 3 Millimeter dick und wird auch, wegen ihres Aussehens, als graue Substanz bezeichnet. Ihre graue Farbe erhält die Großhirnrinde von den Zellkörpern der Neurone. Unterhalb der Großhirnrinde befindet sich die weiße Substanz.

Lesen Sie auch: Enterisches Nervensystem vs. Vegetatives Nervensystem: Ein detaillierter Vergleich

Rückenmark

Das Rückenmark verläuft geschützt innerhalb der Wirbelsäule im Spinalkanal. Es handelt sich dabei um eine stabförmige Ansammlung von Nervenzellkörpern und -fasern, die bei Erwachsenen ca. einen halben Meter lang ist. Umgeben ist es von einer Flüssigkeit, dem Liqour (Nervenwasser). Wie auch das Großhirn besteht das Rückenmark aus einer grauen und einer weißen Substanz. Die graue Substanz liegt innen und wird von der weißen umhüllt. Aus den Seiten des Rückenmarks treten Nervenfasern aus, die sich zu Spinalnerven vereinigen. Über Zwischenräume in der knöchernen Wirbelsäule treten diese aus dem Wirbelkanal aus. Es verbindet das Gehirn mit der Peripherie des Körpers. Sensible Nervenbahnen transportieren Informationen zum Gehirn (afferente Bahnen) und motorische Bahnen (efferente Bahnen) leiten Informationen vom Gehirn an ausführende Strukturen wie z. B. die Muskeln. Die graue Substanz enthält Nervenzellkörper, die Schmerz- und Berührungsreize übertragen sowie Nervenzellen, die der Motorik dienen und Nervenzellen des autonomen Systems, das die inneren Organe steuert. Die weiße Substanz enthält auf- und absteigende Fasersysteme. Über die gesamte Länge des Rückenmarks entspringen auf beiden Seiten in regelmäßigen Abständen 31 Paare von Nervenwurzeln, die sich zu den Spinalnerven vereinigen.

Peripheres Nervensystem (PNS)

Das periphere Nervensystem besteht aus neuronalen Komponenten, die sich aus dem ZNS fortsetzen. Rückenmark, die sich außerhalb des ZNS befinden. Unser Nervensystem gliedert sich in das Zentralnervensystem (ZNS) und das periphere Nervensystem. Die außerhalb von Gehirn und Rückenmark liegenden Nervenzellen gehören zum peripheren Nervensystem. Sie bilden Nervenstränge, die von Gehirn und Rückenmark in die Peripherie des Körpers verlaufen und von dort zurück. Als peripheres Nervensystem werden all jene Nerven zusammengefasst, die nicht zum ZNS gehören. Die Hirnnerven verknüpfen unsere Sinnesorgane mit dem Gehirn und der Muskulatur im Kopf- und Rumpfbereich. Entsprechend der Reihenfolge, in der sie aus dem Gehirn austreten, werden sie mit römischen Zahlen nummeriert. Zu den Hirnnerven gehören beispielsweise unser Riechnerv (I. Hirnnerv; Nervus olfactorius), der Sehnerv (II. Hirnnerv; Nervus opticus) und unser Gesichtsnerv (VII. Hirnnerv; Nervus facialis). Rund die Hälfte der Hirnnerven sind sogenannte gemischte Nerven, d. h. sie enthalten sowohl motorische als auch sensorische Fasern. Die Spinalnerven sind ebenfalls gemischte Nerven. Sie bilden sich aus den Nervenwurzeln im Rückenmark und verzweigen sich nach ihrem Austritt aus dem Wirbelkanal in 3-4 Äste, um verschiedene Körperbereiche versorgen zu können. Der vordere Ast z. B. Um sensorische Informationen zu übertragen und Körperfunktionen sowie Reaktionen zu koordinieren, arbeiten unser peripheres und zentrales Nervensystem als perfektes Team zusammen. Nicht immer wird dabei das Gehirn involviert. Bei Reflexen wie z. B. die Regulation innerer Prozesse wie z. B. die Interaktion mit der Umwelt, d. h.

Somatisches Nervensystem

Das willkürliche Nervensystem (somatisches Nervensystem) steuert alle Vorgänge, die einem bewusst sind und die man willentlich beeinflussen kann. Dies sind zum Beispiel gezielte Bewegungen von Gesichtsmuskeln, Armen, Beinen und Rumpf. Viele der Funktionen, die unser Nervensystem übernimmt, können wir bewusst steuern. Auf manches haben wir allerdings keinen Einfluss. Sowohl bei bewussten als auch bei unbewussten Reaktionen spielen die Sinneszellen als Übermittler der Informationen eine zentrale Rolle. Denn sie nehmen Sinnesreize (Sehen, Hören, Riechen usw.) aus der Umwelt wahr und leiten sie über das periphere Nervensystem an unser Gehirn. Abhängig vom Sinnesreiz werden verschiedene Arten von Rezeptoren erregt. Im Gehirn angekommen wird der Sinnesreiz dann schließlich mit übergeordneten Hirnprozessen wie z. B. Je nachdem, ob unser Körper Reize der Umwelt verarbeitet oder Körperfunktionen im Inneren koordiniert, unterscheidet man zwischen somatischem (willkürlichem) Nervensystem und vegetativem (unwillkürlichem) Nervensystem. Das somatische (willkürliche) Nervensystem steuert die Motorik der Skelettmuskulatur und damit alle bewussten, willentlichen Körperreaktionen und Reflexe, die als Reaktion auf unsere Umwelt erfolgen. Wenn wir also im Sommer nach draußen gehen und realisieren, dass es uns zu hell ist, leiten die Sinneszellen der Augen die Information über sensorische Nervenfasern an das Gehirn weiter. Dort wird die Information dann zur Entscheidung umgewandelt, eine Sonnenbrille zu tragen - und der Befehl „Sonnenbrille aufsetzen“ wird über motorische Nervenfasern an die Hand weitergeleitet.

Vegetatives Nervensystem

Das vegetative Nervensystem (autonomes Nervensystem) regelt die Abläufe im Körper, die man nicht mit dem Willen steuern kann. Es ist ständig aktiv und reguliert beispielsweise Atmung, Herzschlag und Stoffwechsel. Hierzu empfängt es Signale aus dem Gehirn und sendet sie an den Körper. In der Gegenrichtung überträgt das vegetative Nervensystem Meldungen des Körpers zum Gehirn, zum Beispiel wie voll die Blase ist oder wie schnell das Herz schlägt. Das vegetative Nervensystem kann sehr rasch die Funktion des Körpers an andere Bedingungen anpassen. Ist einem Menschen beispielsweise warm, erhöht das System die Durchblutung der Haut und die Schweißbildung, um den Körper abzukühlen. Sowohl das zentrale als auch das periphere Nervensystem enthalten willkürliche und unwillkürliche Anteile. Im Gegensatz zum somatischen Nervensystem haben wir über das vegetative Nervensystem keinerlei Kontrolle. Die Tatsache, dass wir es nicht beeinflussen können, bedeutet aber nicht, dass es weniger wichtig für uns ist. Im Gegenteil: Das vegetative Nervensystem innerviert unser Herz, die Gefäße sowie Drüsen und die glatte Muskulatur der Eingeweide und steuert so sämtliche „Vitalfunktionen“ (u. a. Wenn sich beim Sport unser Puls erhöht und wir zu schwitzen beginnen, verdanken wir das der Arbeit des vegetativen Nervensystems. Darüber hinaus beeinflusst das vegetative Nervensystem auch einzelne Organe und Muskeln, darunter unsere Sexualorgane oder den inneren Augenmuskel, der u.a. Diese werden durch übergeordnete Schaltzentren im verlängerten Rückenmark und Hypothalamus reguliert.

Sympathikus und Parasympathikus

Das sympathische und parasympathische Nervensystem (Sympathikus und Parasympathikus) wirken im Körper meist als Gegenspieler: Der Sympathikus bereitet den Organismus auf körperliche und geistige Leistungen vor. Er sorgt dafür, dass das Herz schneller und kräftiger schlägt, erweitert die Atemwege, damit man besser atmen kann, und hemmt die Darmtätigkeit. Der Parasympathikus kümmert sich um die Körperfunktionen in Ruhe: Er aktiviert die Verdauung, kurbelt verschiedene Stoffwechselvorgänge an und sorgt für Entspannung. Sympathikus und Parasympathikus werden oft als Gegenspieler bzw. Antagonisten bezeichnet. Dabei wirkt der Sympathikus erregend bzw. leistungssteigernd (ergotrop) auf die Organfunktionen und versetzt unseren gesamten Körper in eine „Stresssituation“, den sogenannten „fight-or-flight“ Modus. In der Folge weiten sich die Pupillen, der Herzschlag und die Atmung werden beschleunigt, Energie wird freigesetzt. Vorgänge, die für eine sofortige Aktivität nicht so wichtig sind (z. B. So ist unser Körper bereit, Höchstleistungen zu vollbringen. Reize, die den Sympathikus aktivieren (sogenannte Stressoren) können sowohl physischer (z. B. Lärm, Hitze) als auch psychischer Natur sein. Anatomisch hat der Sympathikus seinen Ursprung in den Nervenzellkörpern des Rückenmarks, deren Nervenfasern zwischen den Brust- und Lendenwirbeln aus dem Wirbelkanal austreten und sogenannte Ganglien (Ansammlungen von Nervenzellkörpern) bilden. Diese verbinden sich an beiden Seiten der Wirbelsäule zu einem perlschnurartigen sogenannten Grenzstrang aus, über den die Nervenfasersysteme in Verbindung stehen. Als „Gegenspieler“ des Sympathikus ist der Parasympathikus der Teil des vegetativen Nervensystems, der für die Ruhe -und Regenerationsphasen („rest-and-digest“) verantwortlich ist und das innere Gleichgewicht wiederherstellt. Um dies zu erreichen, beginnt der Parasympathikus nach der Aktivierung des Sympathikus dadurch gegenzusteuern, dass er beispielsweise die Herzfrequenz senkt, die Pupillen verengt und den Stoffwechsel zum Aufbau von Reserven steigert. Gleichzeitig aktiviert der Parasympathikus die Tätigkeit des Verdauungssystems. Die Nerven des Parasympathikus haben ihren Ursprung im Hirnstamm und dem zum Kreuzbein gehörigen Bereich des Rückenmarks. Anders als im Sympathikus liegen die Ganglien des Parasympathikus aber nicht neben der Wirbelsäule, sondern dicht bei den versorgten Organen.

Lesen Sie auch: Wie das vegetative Nervensystem die Blase beeinflusst

Enterisches Nervensystem

Das enterische Nervensystem ist der dritte Bereich des vegetativen Nervensystems, der als Geflecht von Nervenzellen den Verdauungstrakt durchzieht. Interessanterweise steuert das enterische Nervensystem nicht nur Verdauungsprozesse, sondern hat auch einen Einfluss auf unsere Gefühlswelt und unser Wohlbefinden. Umgekehrt scheinen aber auch Veränderungen im Magen-Darm-Trakt Auswirkungen auf Emotionen zu haben. Forschungsarbeiten der letzten Jahre deuten darauf hin, dass die Zusammensetzung der Darmflora hier eine Rolle spielt. Des Weiteren gibt es das enterische Nervensystem. Dabei handelt es sich um ein komplexes Geflecht aus Nervenzellen, das annähernd den gesamten Gastrointestinaltrakt (Verdauungstrakt) durchzieht. Die Hauptkomponenten des enterischen Nervensystems sind der Auerbach-Plexus (Plexus myentericus) und der Meissner-Plexus (Plexus submucosus).

Funktion des Nervensystems

Die vom Nervensystem gesammelten Informationen werden dann in elektrische Impulse umgewandelt und über Nervenfasern mit einer Geschwindigkeit von rund 400 km/h an das Gehirn weitergeleitet. Dort werden sie schließlich verarbeitet und gespeichert. Auf diese Weise werden nicht nur Bewegungsabläufe und die Funktion unserer Organe gesteuert.

Neuronen und Signalübertragung

Als kleinste funktionelle Einheit bilden die Nervenzellen (med.: Neuron) mit ihren umgebenden Gliazellen die Grundbausteine unseres Nervensystems. Die kleinen, meist stark verästelten Dendriten empfangen Signale, während das längere Axon, die elektrische Erregung zum Ende der Nervenzelle weiterleitet. Dort angekommen wird der Reiz durch die sogenannten Synapsen (Schaltstelle der Nervenzelle) zur nächsten Zelle transportiert. Häufig wird der Begriff „Nervenzelle“ bzw. Neuron mit „Nerv“ gleichgesetzt, auch wenn dies anatomisch nicht richtig ist. Ein Nerv besteht vielmehr aus einem Zusammenschluss mehrerer, parallel verlaufender, gebündelter Nervenfasern (Axone). Je nachdem, welche Aufgabe der Nerv erfüllt bzw. in welche Richtung er die Informationen weiterleitet, wird er als efferenter (motorischer), afferenter (sensorischer) oder gemischter Nerv bezeichnet. Efferente Nerven leiten elektrische Impulse vom Zentrum (Gehirn, Rückenmark) zur Peripherie, beispielweise zur Skelettmuskulatur. Afferente Nerven hingegen senden den Reiz von der Peripherie (z. B.

Reizaufnahme, -verarbeitung und -weiterleitung

Das Nervensystem ist die zentrale Informations- und Kommunikationsplattform unseres Körpers. Als faszinierendes Netzwerk durchzieht es unseren gesamten Organismus und dient der Erfassung, Weiterleitung und Verarbeitung von Informationen. Um diese Aufgabe bewerkstelligen zu können, nutzt es spezialisierte Sensoren (z. B. Reize registrieren, verarbeiten, weiterleiten Alle Reize, die von außen kommen (z.B. Kälte) oder im Körper selbst entstehen (z.B. Zahnschmerzen), werden von Nerven registriert und in Form von elektrischen Impulsen ans Gehirn weitergeleitet. In der Zentrale im Kopf können die Informationen ausgewertet und bei Bedarf miteinander verknüpft werden. Ein Beispiel: Aus einem Hitzeempfinden in der Hand, die - wie die Augen melden - eine Tasse hält, kombiniert das Gehirn, dass der Kaffee im Becher noch sehr heiß ist.Das Gehirn sendet schließlich auch seinerseits elektrische Signale aus, etwa um Körperbewegungen auszulösen (z.B. Augenzwinkern, Handheben) oder die Funktion der inneren Organe zu regulieren (wie die Ausschüttung von Magensaft). Und nicht zu vergessen: Denken, lachen, lesen, lernen - all das und noch viel mehr hält das Gehirn ebenfalls permanent auf Trab und bringt die Neuronen dazu, in jeder Millisekunde unzählige Impulse durchs Netzwerk zu schießen - ein endloses Feuerwerk.

Neurologische Erkrankungen

Neurologische Erkrankungen sind Erkrankungen des Nervensystems. Sie sind entweder durch einen Gendefekt angeboren oder entstehen im Laufe des Lebens. Hierfür können zum Beispiel eine Infektion, ein Trauma oder eine Rückbildung (Degeneration) verantwortlich sein. Nachfolgend werden unter "Nervensystem" Krankheiten beschrieben, die gemäß ICD-10 dieser Kategorie zuzuordnen sind (G00-G99).

Lesen Sie auch: Sympathikus und Parasympathikus detailliert erklärt

Amyotrophe Lateralsklerose (ALS)

Amyotrophe Lateralsklerose (ALS) (ALS): auch als Lou-Gehrig-Krankheit bekannt. Amyotrophe Lateralsklerose (ALS) ist eine sporadisch auftretende oder vererbte neurodegenerative Erkrankung der ersten und zweiten Motoneurone. Gastrointestinale Motilität führen. Die Diagnose wird klinisch gestellt.

Läsionen des Motoneurons

Läsion des ersten Motoneurons: Mehrzahl an Defiziten, die nach einer Schädigung eines ersten Motoneurons (z. B. Schlaganfall) auftreten können. Neurologische Untersuchung, Spastik und Klonus. Läsion des zweiten Motoneurons: Mehrzahl an Defiziten, die nach einer Schädigung eines zweiten Motoneurons (z. B. Trauma oder Impingement) auftreten können. Anzeichen und Symptome können Lähmung oder Parese, Muskelatrophie, Areflexie und Fibrillationen umfassen.

Risikofaktoren und Diagnostik

Mikronährstoffmangel - Ein Defizit an essenziellen Nährstoffen wie Vitamin B1 (Thiamin), B6, B12, Folsäure, Vitamin D, Magnesium, Eisen und Zink kann neurologische Funktionsstörungen verursachen und neurodegenerative Erkrankungen (z. B. Genussmittelkonsum inkl. Erhöhter Taillenumfang (abdominale Adipositas, Apfel-Typ) - Steht in Zusammenhang mit Insulinresistenz, chronischer systemischer Inflammation und neurodegenerativen Prozessen (z. B. Bitte beachten Sie, dass die Aufzählung nur einen Auszug der möglichen Risikofaktoren darstellt. Morbus Parkinson ist heute bereits die häufigste neurologische Alterserkrankung. Etwa 1 % der über 60-Jährigen sind davon betroffen. Als Morbus Alzheimer wird eine primär degenerative Hirnerkrankung bezeichnet, die mit fortschreitender Demenz einhergeht. Die Erkrankung macht etwa drei Viertel aller Demenzerkrankungen aus und stellt somit die häufigste Form der Demenz im Alter dar. Entzündungsparameter - C-reaktives Protein (CRP), Blutsenkungsgeschwindigkeit (BSG), Leukozytenzahl zur Beurteilung entzündlicher ZNS-Erkrankungen (z. B. Leber- und Nierenparameter - zur Abklärung neurotoxischer Stoffwechselstörungen (z. B. Computertomographie (CT) des Schädels (craniales CT bzw. Magnetresonanztomographie des Schädels (Schädel-MRT, craniale MRT bzw. CT-Angiographie bzw. Psychometrische Verfahren - z. B. Persönlichkeitsdiagnostik - mithilfe standardisierter Fragebögen (z. B. Bei Erkrankungen des Nervensystems sollte zunächst der Hausarzt aufgesucht werden. In Abhängigkeit von der Erkrankung bzw.

Entwicklung des Nervensystems

Die Entwicklung einzelner Bestandteile des Nervensystems beginnt beim Embryo bereits in der 3. Schwangerschaftswoche. Daher ist es besonders wichtig, dass Frauen mit Kinderwunsch am besten schon vor der Empfängnis mit allen wichtigen Nährstoffen versorgt sind, die für den Aufbau von Nervengewebe nötig sind (v. a.

tags: #nervensystem #mensch #anatomie #physiologie