Synapsen sind essenzielle Verbindungsstellen im Körper, die eine sichere Informationsübertragung zwischen Zellen ermöglichen. Sie sind nicht nur für die normale Funktion des Nervensystems unerlässlich, sondern spielen auch eine wichtige Rolle bei der Entstehung und Behandlung von Krankheiten. Synapsen ermöglichen es einem Neuron, ein elektrisches oder chemisches Signal an ein anderes Neuron oder eine Effektorzelle weiterzugeben. Das Neuron, welches das Signal an ein anderes Neuron sendet, wird als präsynaptisches Neuron bezeichnet, während das Neuron, das das Signal empfängt, als die Bezeichnung postsynaptisches Neuron trägt.
Was ist eine Synapse?
Eine Synapse ist die Verbindungsstelle zwischen zwei Nervenzellen (Neuronen) oder zwischen einem Neuron und einer anderen Zelle (z. B. Muskel- oder Drüsenzelle), an der Informationen übertragen werden. Sie ist ein zentraler Bestandteil der Kommunikation im Nervensystem. Die Synapse stellt den essenziellen Verbindungspunkt einer Nervenzelle dar und ermöglicht die Übertragung eines chemischen oder elektrischen Signals auf eine andere Nerven- oder Körperzelle. Synapsen sind keine starren Verbindungen, sondern hochdynamische, spezialisierte Bereiche, die Reize gezielt weiterleiten, filtern, verstärken oder hemmen. Ob beim Lernen, Erinnern oder Steuern eines Muskels - ohne Synapsen gäbe es keine Kommunikation im Nervensystem.
Arten von Synapsen
Im Körper gibt es verschiedene Arten von Synapsen. Generell lassen sie sich in chemische und elektrische Synapsen einteilen. Obwohl Synapsen grundsätzlich ähnlich aufgebaut sind, gibt es verschiedene Synapsentypen.
Chemische Synapsen
Die chemischen Synapsen findet man beim Menschen vor allem im Nervensystem und machen den Großteil der synaptischen Verbindungen aus. Bei einer chemischen Synapse findet die Übertragung durch in Vesikel verpackte chemische Stoffe, die sogenannten Neurotransmitter, statt. Bei einer chemischen Synapse wird das elektrische Signal der präsynaptischen Nervenzelle zunächst in ein chemisches Signal umgewandelt. Die Nervenzelle setzt Neurotransmitter in den synaptischen Spalt frei, die dann an Rezeptoren der postsynaptischen Membran binden. Die Moleküle des Neurotransmitters werden in den Nervenzellen produziert und wandern verstaut in kleinen Bläschen (= Vesikeln) zum Synapsenendknöpfchen des Axons, welches den präsynaptischen Teil der Synapse darstellt. Die Freisetzung von Neurotransmittern wird dort durch einen Anstieg der intrazellulären Calcium-Konzentration innerhalb weniger Millisekunden ausgelöst. Dies geschieht durch die Öffnung spannungsaktivierter Calciumkanäle. Voraussetzung dafür ist ein ankommendes Aktionspotential. Die Neurotransmitter befinden sich in Clustern direkt zwischen den an der präsynaptischen Membran angedockten Vesikeln. Das ermöglicht einen sehr starken und schnellen Anstieg der lokalen Ca2+-Konzentration in der Nähe der Vesikel. Durch Konformationsänderungen Calcium-bindender Proteine, besonders von Synaptotagmin wird die exozytotische Fusion der Vesikel mit der präsynaptischen Membran herbeigeführt und der Inhalt der Vesikel in den synaptischen Spalt freigesetzt.
Je nach Transmitter, den eine chemische Synapse freisetzt, erfüllt sie unterschiedliche Aufgaben. Auch der Rezeptor auf der postsynaptischen Membran spielt eine wichtige Rolle bei der Unterscheidung der Funktion. Inhibitorische Synapsen hemmen die Erregung auf die nachfolgende Zelle.
Lesen Sie auch: Wie Alkohol die Signalübertragung im Gehirn beeinflusst
Elektrische Synapsen
Elektrische Synapsen kommen im Körper eher selten vor. In einer elektrischen Synapse (auch Gap Junction genannt) wird das Aktionspotenzial direkt in elektrischer Form an die nächste Nervenzelle weitergeleitet, ohne einen Neurotransmitter als Botenstoff zu verwenden. Bei elektrischen Synapsen sind Prä- und Postsynapse über die sogenannten Gap Junctions verbunden. Das sind Zell-Zell-Kontakte, über die ein Austausch von Ionenströmen zwischen den zwei Zellen möglich ist. Im Gegensatz dazu findet bei einer elektrischen Synapse die Signalübertragung direkt und sehr schnell über sogenannte Gap Junctions statt. Durch diese Kanäle fließt der elektrische Strom (Ionen) unmittelbar von einer Zelle zur nächsten. Sie haben direkte Verbindungskanäle, so genannte Gap junctions, über welche die Intrazellulärräume unmittelbar aneinander grenzender Zellen miteinander gekoppelt sind. Gap junctions sind Poren in der Zellmembran, die durch bestimmte Proteine, die Connexine gebildet werden. Sechs Connexin-Moleküle kleiden die Pore aus, zusammen bilden sie ein Connexon. Durch den Kontakt zwischen zwei Connexonen benachbarter Zellen entsteht ein Kanal, der beide Membranen durchquert. Durch elektrische Synapsen erfolgt eine direkte Ausbreitung von Änderungen des Membranpotentials über einen relativ geringen ohmschen Widerstand, aber auch die Diffusion von Molekülen, wie z.B. sekundärer Botenstoffe.
Aufbau einer chemischen Synapse
Eine Synapse besteht aus drei Bereichen:
- Präsynapse: Von der Präsynapse geht das weitergeleitete Signal aus. Sie bildet das Endknöpfchen des sendenden Neurons. Hier werden die sogenannten Neurotransmitter in kleinen Bläschen (Vesikeln) gespeichert. Die präsynaptische Membran befindet sich am Axonende eines Neurons, genauer gesagt am synaptischen Endknöpfchen. Im Endknöpfchen sind Vesikel vorhanden, die mit Neurotransmittern gefüllt sind. Die präsynaptischen Nervenenden enthalten die als Neurotransmitter bezeichneten Signalmoleküle, die in kleinen membranumschlossenen Vesikeln gespeichert sind. Jedes Nervenende im zentralen Nervensystem enthält durchschnittlich mehrere 100 synaptische Vesikel. Dennoch gibt es hier große Unterschiede: So gibt es beispielsweise Spezialisten unter den Synapsen, die mehr als 100.000 Vesikel enthalten. Dazu zählen die Synapsen, die unsere Muskeln steuern.
- Synaptischer Spalt: Zwischen den beiden Strukturen befindet sich ein kleiner Spalt, der als synaptischer Spalt bezeichnet wird. Der synaptische Spalt ist der kleine Zwischenraum zwischen den beiden kommunizierenden Neuronen. Durch diesen Spalt diffundieren die Neurotransmitter der präsynaptischen Membran und können sich an die Rezeptoren der postsynaptischen Membran binden. Der winzige Zwischenraum (etwa 20-50 Nanometer breit) trennt das Endknöpfchen von der nächsten Zelle.
- Postsynapse: Die Postsynapse ist die Nachbarzelle, die das Signal empfängt. Die postsynaptische Membran gehört zum Dendriten der nachfolgenden Nervenzelle. Auf der anderen Seite des synaptischen Spaltes treffen die Botenstoffe auf Andockstellen in der Membran des Empfänger-Neurons, die die elektrischen Eigenschaften dieser Membran regulieren. Die postsynaptische Membran befindet sich auf der empfangenden Zelle und enthält Rezeptoren, die die freigesetzten Neurotransmitter binden.
Funktion der chemischen Synapse
Damit das Aktionspotential an der chemischen Synapse übertragen werden kann, sind einige Abläufe nötig. Wenn die Erregung nun das Axonende erreicht öffnen sich durch das Aktionspotential spannungsabhängige Calcium-Kanäle und sorgen für einen Einstrom von Calcium-Ionen in die Zelle hinein. Der Anstieg der Calciumionenkonzentration löst die Verschmelzung der Vesikel (Bläschen) mit der Membran aus. Das SNARE-Protein Synaptotagmin registriert die erhöhte Calcium-Konzentration und aktiviert die restlichen SNARE-Proteine. Daraufhin interagiert das Protein Synaptobrevin der Vesikelmembran mit dem target-Protein der Zellmembran des Neurons. Die Neurotransmitter können an der postsynaptischen Membran an für sie spezifische Rezeptoren (Andockstellen) binden. Im synaptischen Spalt können die Transmitter nichts erreichen. Sie binden an ihre Zielrezeptoren, die sich auf der Membran der Postsynapse befinden. Diese aktivierten Rezeptoren lösen dann eine Reaktion in der Zielzelle aus. Die Kanäle sind also nicht spannungsgesteuert, sondern ligandengesteuert. Das bedeutet: Die Ionenkanäle öffnen sich, sobald ein Transmitter (= Ligand) an den entsprechenden Rezeptor gebunden hat. Dieser Ein- und Ausstrom hat eine positive oder negative Veränderung der Spannung zur Folge (= postsynaptisches Potential). Die Erregung / Hemmung findet solange statt, wie die Neurotransmitter an den Rezeptoren gebunden sind. Dann können sie wieder von der präsynaptischen Zelle aufgenommen und erneut verwendet werden.
Auf der anderen Seite des synaptischen Spalts treffen die Botenstoffe auf Andockstellen in der Membran des Empfänger-Neurons, die die elektrischen Eigenschaften dieser Membran regulieren. Dadurch ändert sich der Membranwiderstand. Die Empfängerzelle kann die Spannungsänderung, die dadurch entsteht, in einem rasanten Tempo verarbeiten Zwischen dem Eintreffen des Impulses bis zur Spannungsänderung auf der anderen Seite des synaptischen Spalts vergeht nur etwa eine tausendstel Sekunde. Damit stellt die synaptische Übertragung einen der schnellsten biologischen Vorgänge dar.
Beendigung des Signals an der Synapse
Ein Signal an der Synapse wird beendet, indem die freigesetzten Neurotransmitter auf verschiedene Weise inaktiviert werden. Die Neurotransmitter werden im synaptischen Spalt abgebaut. Damit Signale nicht "hängenbleiben", werden Neurotransmitter nach ihrem Einsatz rasch abgebaut oder zurück in die Präsynapse aufgenommen (Reuptake). Bei einigen Transmittern erfolgt kein Abbau: Sie werden wieder vom Axon oder von Gliazellen aufgenommen.
Lesen Sie auch: Wie Opiate Synapsen beeinflussen
Neurotransmitter und ihre Funktionen
Neurotransmitter sind chemische Botenstoffe, die im Nervensystem die Signalübertragung zwischen Nervenzellen oder zwischen einem Neuron und einer anderen Zielzelle ermöglichen. Sie werden an chemischen Synapsen freigesetzt, wenn ein elektrisches Signal die präsynaptische Nervenzelle erreicht.
Acetylcholin
Die quartäre Ammoniumverbindung Acetylcholin hat häufig erregende Eigenschaften und spielt vor allem bei Synapsen im Großhirn, Hirnstamm und Rückenmark eine Rolle. Im Perikaryon wird seine Bildung aus Cholin und Acety-CoA von der Cholinacetyltransferase katalysiert. Auf der postsynaptischen Membran bindet Acetylcholin entweder an muscarinerge oder nicotinerge Rezeptoren. Erstere sind vor allem im Zusammenhang mit dem vegetativen Nervensystem von Bedeutung.
Monoamine
Bedeutende Vertreter der Monoamine sind Adrenalin und Noradrenalin. Aber auch Dopamin, Histamin und Serotonin gehören zu ihnen. Noradrenerge Synapsen findet man vor allem im Hirnstamm und in vegetativen, sympathischen Fasern. Histamin ist in Synapsen zu finden, die an der Regulation des Schlaf-Wach-Rhythmus beteiligt sind. Das Katecholamin Dopamin befindet sich in den Basalganglien und in Teilen des limbischen Systems. Auch Serotonin ist ein Neurotransmitter des limbischen Systems.
GABA
GABA gehört zu den Aminosäuren und wirkt in vielen Bereichen des zentralen Nervensystems. Dort hat es eine hemmende Wirkung, wenn es an die verschiedenen Rezeptoren bindet.
Neuropeptide
Viele Neuropeptide fungieren als Neurotransmitter. Neuropeptide binden an spezifische Rezeptoren, meist G-Protein-gekoppelte Rezeptoren, und beeinflussen vielfältige Prozesse wie Schmerzempfinden, Appetit, Schlaf, Stimmung oder Stressreaktionen.
Lesen Sie auch: Funktionsweise hemmender Synapsen
Synaptische Plastizität
Synaptische Plastizität ist die Fähigkeit von Synapsen, ihre Stärke und Effizienz zu verändern - je nachdem, wie oft und wie stark sie benutzt werden. Sie ermöglicht es dem Gehirn, auf Erfahrungen zu reagieren und sich anzupassen. Eine berühmte Form ist die Langzeitpotenzierung (LTP): Werden Synapsen über längere Zeit wiederholt aktiviert, werden sie besonders leistungsfähig. Diese Anpassungsfähigkeit ist die physikalische Grundlage für nahezu alle Lern- und Anpassungsprozesse im Nervensystem - von kindlicher Sprachentwicklung über das Erlernen eines Musikinstruments bis hin zur Regeneration nach einer Gehirnverletzung. Gehirnforscherinnen und -forscher sprechen deshalb oft vom "Gedächtnis der Synapsen".
Synapsen und Erkrankungen
Synapsen können von Erkrankungen betroffen sein. Aber auch Gifte oder Toxine von Krankheitserrregern können diese Strukturen gezielt ausschalten. Bei einer Vielzahl von psychiatrischen und neurologischen Erkrankungen liegen Störungen der Neurotransmitter-Freisetzung vor.
Depressionen
Bei Depressionen spielen Störungen der synaptischen Signalübertragung eine zentrale Rolle. Besonders betroffen sind die Botenstoffe Serotonin, Noradrenalin und Dopamin, die an bestimmten Synapsen im Gehirn für die Regulation von Stimmung, Antrieb, Schlaf und emotionalem Erleben verantwortlich sind.
Lambert-Eaton-Syndrom
Das Lambert-Eaton-Syndrom ist eine seltene Autoimmunerkrankung, die die Signalübertragung an der neuromuskulären Synapse stört. Normalerweise wird an dieser Synapse der Neurotransmitter Acetylcholin aus der präsynaptischen Nervenzelle freigesetzt, um einen Muskelreiz auszulösen. Bei dem Lambert-Eaton-Rooke-Syndrom bildet das Immunsystem jedoch Antikörper gegen spannungsabhängige Calciumkanäle auf der präsynaptischen Membran. Diese Kanäle sind notwendig, damit Calcium in die Nervenzelle einströmt und die Freisetzung von Acetylcholin auslöst.
Myasthenia gravis
Myasthenia gravis ist eine chronische Autoimmunerkrankung, die die Signalübertragung an der neuromuskulären Synapse stört. Dabei bildet das Immunsystem Autoantikörper gegen Acetylcholinrezeptoren auf der postsynaptischen Membran der Muskelzelle. Normalerweise bindet der Neurotransmitter Acetylcholin, der von der Nervenzelle freigesetzt wird, an diese Rezeptoren, um eine Muskelkontraktion auszulösen. Bei Myasthenia gravis blockieren oder zerstören die Autoantikörper jedoch die Rezeptoren, was die Signalweiterleitung stark beeinträchtigt.
Vergiftungen
Vergiftungen mit dem Phosphorsäureester Parathion (E 605) führen zu einer irreversiblen Hemmung des Enzyms Acetylcholinesterase, das den Abbau von Acetylcholin am Rezeptor katalysiert. Die Folge ist eine Daueraktivierung der Neurone und Muskelzellen, was zum Tod führen kann.
Das Gift des Bakteriums Clostridium botulinum ist das Botolinumtoxin. Es hindert die Synapsen an der Freisetzung von Acetylcholin an der neuromuskulären Endplatte und führt so zur Lähmung der betroffenen Muskulatur.
Ein weiteres bakterielles Toxin ist das Gift von Clostridium tetani, welches als Tetanustoxin bekannt ist. Das Tetanustoxin verhindert die Freisetzung von Neurotransmittern in bestimmten Neuronen, da es Synaptobrevin proteolytisch abbaut und damit die Vesikelfusion verhindert.
Botulinumtoxin (Botox)
Botulinumtoxin (umgangssprachlich: „Botox“) wird in der Medizin gezielt eingesetzt, um übermäßige Muskelaktivität oder Drüsentätigkeit zu hemmen. Es wirkt an der neuromuskulären Synapse, indem es die Freisetzung von Acetylcholin aus der präsynaptischen Nervenzelle blockiert - dadurch wird die Signalübertragung unterbrochen, und der Muskel entspannt sich. Klinisch wird es z. B.
Medikamente
Einige Medikamente entfalten ihre Wirkung auf unterschiedliche Art und Weise an Synapsen. Zu diesen gehören auch gewisse Antidepressiva, die die Wiederaufnahme von Noradrenalin oder Serotonin in die Präsynapse verhindern.
Andere Erkrankungen
- Autismus-Spektrum-Störung: neurologische Entwicklungsstörung, die durch reduzierte soziale Fähigkeiten, eingeschränkte Interessen und soziale Interaktionen sowie sich wiederholende und stereotype Verhaltensweisen gekennzeichnet ist.
- Chorea Huntington: progressive neurodegenerative Erkrankung mit autosomal-dominanter Vererbung. Sie wird durch vervielfältigte CAG-Triplett-Wiederholungen (Cytosin-Adenin-Guanin) im Huntingtin-Gen (HTT) verursacht.
- Schizophrenie: schwere chronische psychische Störung, die durch psychotische Symptome, desorganisiertes Sprechen oder Verhalten gekennzeichnet ist.
- Parkinson-Krankheit: neurodegenerative Erkrankung, bei der die Produktion von Dopamin durch Zerstörung der produzierenden Zellen in der Substantia nigra vermindert ist.
Synapsengifte
Als Synapsengifte werden chemische Substanzen bezeichnet, welche die Funktion von Synapsen erheblich stören oder sogar ganz unterbinden können. Diese Gifte blockieren entweder die Abgabe der Neurotransmitter in den synaptischen Spalt, oder aber sie sind den Neurotransmittern so ähnlich, dass sie an ihrer Stelle mit den Rezeptormolekülen in der postsynaptischen Membran reagieren und so die Erregungsleitung stören. Zu den bekanntesten Synapsengiften gehören viele Alkaloide wie etwa Muskarin, Atropin und Curare sowie Nikotin.