Das menschliche Gehirn ist ein faszinierendes und komplexes Organ, das unser Denken, Verhalten und Empfinden steuert und beeinflusst. Es ist die Schaltzentrale, die unser Denken, Verhalten und Empfinden steuert und beeinflusst. Doch trotz jahrhundertelanger Forschung bleibt das Gehirn ein Rätsel, das nur teilweise entschlüsselt wurde. Es ist für viele kognitive Funktionen verantwortlich und seine Plastizität ermöglicht es, sich an neue Herausforderungen und Erfahrungen anzupassen. Das Gehirn ist ein wichtiges Organ aller Wirbeltiere und damit auch des Menschen. Es sammelt alle Informationen, die der Körper von außen und aus seinem Inneren erhält. Es verarbeitet sie und sendet Befehle, um die einzelnen Organe zu steuern. Das Gehirn ist auch der „Sitz“ des Bewusstseins, des Denkens und des Gedächtnisses. Nahezu alles, was wir denken, fühlen und machen, geht vom Gehirn aus.
Das menschliche Gehirn: Eine Übersicht
Das menschliche Gehirn ist ein komplexes Organ, das aus Milliarden von Neuronen und Gliazellen besteht. Es wiegt durchschnittlich 1,5 Kilogramm, ist so groß wie zwei Fäuste und seine Form erinnert an das Innere einer Walnuss. Das Gehirnvolumen (Mensch) beträgt etwa 20 bis 22 Gramm pro Kilogramm Körpermasse. Das Gewicht (Gehirn) macht mit 1,5 bis zwei Kilogramm ungefähr drei Prozent des Körpergewichts aus.
Die Hauptbereiche des Gehirns
Es wird in vier Hauptbereiche unterteilt: das Großhirn, das Kleinhirn, das Zwischenhirn und der Hirnstamm.
- Das Großhirn (Telencephalon): Auch Cerebrum genannt, ist der größte Teil des Gehirns und macht etwa 85% des Gesamtvolumens aus. Es besteht aus zwei Hälften, den sogenannten Hemisphären, die durch eine tiefe Fissur getrennt sind. Jede Hemisphäre besteht aus vier Lappen: dem Frontallappen (dt. Stirnlappen), dem Parietallappen (dt. Scheitellappen), dem Temporallappen (dt. Schläfenlappen) und dem Okzipitallappen (dt. Hinterhauptlappen). Durch ihre dichte Vernetzung elektrischer Signalwege ermöglichen sie komplexe Hirnfunktionen, wie Bewegung, Sinneswahrnehmung, Sprache und Gedächtnis. Die verschiedenen Anteile der Großhirnrinde übernehmen ganz unterschiedliche Funktionen.
- Das Kleinhirn (Cerebellum): Es befindet sich unterhalb des Großhirns und ist für die Koordination von Bewegungen und die Aufrechterhaltung des Gleichgewichts zuständig. Neue Studien zeigen, dass es außerdem an Lernprozessen und weiteren kognitiven Prozessen beteiligt ist. Es hat eine charakteristische, feine Oberflächenstruktur, die aus vielen kleinen Furchen und Windungen besteht. Oberhalb des Hirnstamms und unterhalb der beiden Großhirnhemisphären sitzt das Kleinhirn.
- Das Zwischenhirn (Diencephalon): Es liegt zwischen dem Großhirn und dem Hirnstamm. Seine größte Struktur, der Thalamus, filtert eingehende Signale von unseren Sinnesorganen und leitet sie dann an das Großhirn weiter. Der kleinere Hypothalamus liegt darunter und steuert durch Hormone primitive Funktionen wie unsere Körpertemperatur, Sexualverhalten, Hunger, Durst und Schlaf. Das Zwischenhirn besteht unter anderem aus dem Thalamus und dem Hypothalamus.
- Der Hirnstamm: Er befindet sich unterhalb des Zwischenhirns und ist der Übergangsbereich zwischen dem Gehirn und dem Rückenmark. Er umfasst eine Vielzahl von Kerngebieten, die für lebenswichtige Funktionen wie Atmung, Herzfrequenz und Blutdruckregulation verantwortlich sind. Im unteren Schädelbereich befindet sich die Hirnbasis, die - entsprechend der knöchernen Schädelbasis - stärker modelliert ist. Hier liegt der Hirnstamm.
Die vier Komponenten des Gehirns sind miteinander verbunden und kommunizieren über Milliarden von Nervenzellen, die auch als Neuronen bezeichnet werden. Diese Kommunikationswege heißen Synapsen und mehrere Billiarden Synapsen im menschlichen Gehirn bilden komplexe Schaltkreise, die für die Verarbeitung von Informationen und die Steuerung von Bewegungen und Verhalten verantwortlich sind.
Gehirnwindungen und Furchen
Die Oberfläche des Großhirns besteht aus zahlreichen Windungen und Furchen, die auch als Gyri und Sulci bezeichnet werden. Diese komplexe Struktur erhöht die Oberfläche des Gehirns und ermöglicht es, eine große Anzahl von Neuronen auf kleinem Raum unterzubringen und somit die Leistungsfähigkeit des Gehirns zu erhöhen.
Lesen Sie auch: Einführung in die Gehirnfunktionen
Die Windungen und Furchen des Gehirns sind nicht gleichmäßig verteilt. Die größten Furchen werden als Längs-, Quer- und Seitenfurchen bezeichnet und als Trennlinien genutzt, um die vier Hirnlappen anatomisch voneinander zu unterscheiden.
Die Windungen und Furchen des Gehirns variieren auch zwischen verschiedenen Arten von Lebewesen. Zum Beispiel haben einige Tiere, wie Wale und Delfine, besonders komplexe Gehirne mit vielen Windungen und Furchen, was Forscher:innen als Hinweis auf ihre hohe kognitive Leistungsfähigkeit deuten. Denn die Furchen vergrößern die Oberfläche der Hirnrinde, genannt Kortex, und ermöglichen so komplexere neuronale Verschaltung. Die Anzahl und das Muster von Windungen und Furchen im Gehirn können auch durch Umweltfaktoren beeinflusst werden. So weisen beispielsweise eineiige Zwillinge nicht dieselben Strukturen auf der Hirnoberfläche auf.
Rechte und linke Hemisphäre
Das Gehirn lässt sich in eine rechte und eine linke Gehirnhälfte unterteilen. Diese beiden Hälften sind allerdings über einen dicken Strang Nervenfasern, dem corpus callosum, verbunden und arbeiten zusammen.
Jede Hemisphäre besteht dabei aus einer Großhirn-, einer Zwischenhirn- und einer Kleinhirnhälfte, die auf Funktionen spezialisiert sind, aber gleichzeitig kontinuierlich miteinander kommunizieren. Das Großhirn beherbergt den motorischen Kortex, der Signale an die Muskeln sendet und Bewegungen steuert. Hierbei übernimmt jeweils eine Seite des Gehirns eine Hälfte des Körpers. Interessant ist, dass jeweils die entgegengesetzte Seite gesteuert wird. Das heißt, die rechte Gehirnhälfte steuert die linke Seite des Körpers.
Diese Organisation führt bei einem Schlaganfall dazu, dass es bei einer Schädigung des rechten motorischen Kortex’ zu einer Lähmung in der linken Körperhälfte kommt.
Lesen Sie auch: Sterben aus neurologischer Sicht: Eine detaillierte Untersuchung
Aufbau des Nervensystems
Das Nervensystem des menschlichen Körpers besteht aus Neuronen, Gliazellen und Synapsen.
Neuronen sind spezialisierte Zellen, die Signale in Form von elektrischen Impulsen empfangen, verarbeiten und weiterleiten. Sie bestehen aus einem Zellkörper, Dendriten und einem Axon. Dendriten empfangen Signale von anderen Neuronen und leiten sie an den Zellkörper weiter. Das Axon sendet Signale an andere Neuronen oder an Muskeln oder Drüsen.
Gliazellen sind Zellen, die das Gehirn und das Rückenmark umgeben und unterstützen. Sie liefern den Neuronen Nährstoffe und Sauerstoff, entfernen Abfallprodukte und helfen, die Neuronen zu schützen. Gliazellen tragen auch dazu bei, dass sich Neuronen bei Verletzungen wieder regenerieren. Die Nervenzellen im Gehirn sind eingebettet in ein stützendes Gewebe aus Gliazellen.
Synapsen sind die Verbindungen zwischen Neuronen. Sie ermöglichen es Neuronen, Signale zu senden und zu empfangen. Synapsen funktionieren durch die Freisetzung von Neurotransmittern aus dem “Senderneuron”, die an Rezeptoren auf einem “Empfängerneuron” binden. Dieser Prozess erzeugt ein elektrisches Signal im Empfängerneuron, das in seinem Zellkern mit den Signalen von anderen Synapsen integriert wird. Synapsen sind der Ort, an dem Informationen im Gehirn verarbeitet werden und Lernen und Gedächtnisbildung stattfinden.
Insgesamt arbeiten Neuronen und Gliazellen zusammen, um ein komplexes Netzwerk zu bilden, das die Grundlage für die Informationsverarbeitung im Gehirn bildet.
Lesen Sie auch: Die Reise des Gehirns
Dimensionen des Gehirns
Die Dimensionen des Gehirns sind beeindruckend. Zwar macht das Gehirn nur zwei bis drei Prozent der Gesamtmasse unseres Körpers aus, verbraucht allerdings 20% seiner Energie.
Damit versorgt unser Körper etwa 86 Milliarden Neuronen sowie die gleiche Anzahl an Gliazellen. Der Speicherplatz des Gehirns wird auf ein Petabyte geschätzt, das sind 1.000.000 Gigabyte.
Dass wir nicht unser gesamtes Gehirn nutzen, ist übrigens ein Mythos. Zwar sind nicht alle Teile des Gehirns gleichzeitig aktiv, trotzdem hat jeder Bereich seine Spezialisierung und kommt auch regelmäßig zum Einsatz. Die Gehirnkapazität ist deutlich größer als die, die wir im Alltag tatsächlich nutzen. Das bedeutet: Ein Großteil unserer Gehirnkapazität ist ungenutzt.
Steuerung des Körpers durch das Gehirn
Von einfachen Handgriffen bis zu komplexen Tanzschritten - das Gehirn steuert, meist automatisch, alle unsere Bewegungen. Dabei arbeiten die verschiedenen Bereiche des Gehirns nahtlos zusammen.
Auch das Rückenmark spielt hierbei eine Schlüsselrolle. Es fungiert als Schnittstelle zwischen dem Gehirn und unserem Körper, leitet Signale an die Muskeln und ist für einfache Reflexe verantwortlich.
Wie das Rückenmark und das Gehirn zusammenarbeiten
Das Rückenmark und das Gehirn arbeiten eng zusammen, um das reibungslose Funktionieren des Körpers zu gewährleisten. Das Rückenmark ist ein Teil des zentralen Nervensystems und dient als Verbindung zwischen dem Gehirn und den peripheren Nerven des Körpers. Es verläuft entlang der Wirbelsäule und besteht aus Nervenfasern, die Signale vom Gehirn zu den Muskeln und Drüsen des Körpers übertragen.
Das Gehirn ist das Kontrollzentrum des Körpers und sendet ständig Signale an das Rückenmark, um Körperfunktionen wie Atmung, Herzschlag, Verdauung und Bewegung zu regulieren. Diese Signale werden entlang des Rückenmarks weitergeleitet und führen zur Aktivierung der entsprechenden Muskeln oder Drüsen.
Zusätzlich werden über das Rückenmark auch Signale an das Gehirn gesendet, um Informationen über Schmerzen, Berührungen und andere sensorische Reize zu übermitteln. Dieses Zusammenspiel zwischen Rückenmark und Gehirn ermöglicht es dem Körper, auf seine Umgebung zu reagieren und seine Funktionen zu regulieren.
Gehirn und Körper stehen im ständigen Austausch
Die Verbindung zwischen Gehirn und Körper ist von entscheidender Bedeutung für unser alltägliches Leben. Das Gehirn ist das Kontrollzentrum des Körpers, welches alle Körperfunktionen steuert, einschließlich der Bewegungen, der Sinneswahrnehmung und der Organtätigkeit. Es kommuniziert mit den Sinnesorganen, den Skelettmuskeln, den Drüsen und der glatten, von uns nicht bewusst steuerbaren Muskulatur, wie von Blutgefäßen, der Lunge und Verdauungsorgane. Diese Kommunikation läuft fast ausschließlich über die Nervenbahnen im Rückenmark.
Kognitive Funktionen und Plastizität im Gehirn
Das menschliche Gehirn ist nicht nur für die Steuerung des Körpers verantwortlich, sondern auch für eine Vielzahl von kognitiven Funktionen wie Lernen, Gedächtnis, Sprache und Entscheidungsfindung. Diese kognitiven Funktionen beruhen auf komplexen neuronalen Netzwerken, die sich im Laufe des Lebens entwickeln und verändern.
Die Plastizität des Gehirns
Die Plastizität des Gehirns ist eine faszinierende Eigenschaft, die es dem Gehirn ermöglicht, sich an neue Herausforderungen, Veränderungen und Erfahrungen anzupassen. Das Gehirn kann durch die Bildung neuer Verbindungen zwischen Neuronen und die Modifikation bestehender Verbindungen seine Funktionen verändern und verbessern. Dieser Prozess der Anpassungsfähigkeit findet während der gesamten Lebensspanne statt und wird durch Faktoren wie Lernen, Erfahrung, körperliche Aktivität und Umgebung beeinflusst.
Beispielsweise kann sich das Gehirn nach einem Schlaganfall oder einer Verletzung aufgrund von neuroplastischen Mechanismen regenerieren. Wenn ein Teil des Gehirns beschädigt wird, können andere Teile des Gehirns die Funktionen dieses beschädigten Bereichs übernehmen. Darüber hinaus kann das Gehirn auch in der Lage sein, neue Verbindungen zwischen Neuronen zu bilden, um verlorene Funktionen wiederzugewinnen.
Die Plastizität des Gehirns spielt auch eine wichtige Rolle beim Lernen und Gedächtnis. Wenn wir etwas lernen, werden neue neuronale Verbindungen gebildet und bestehende Verbindungen verstärkt. Durch diese Veränderungen kann das Gehirn Informationen schneller und effektiver verarbeiten, wodurch wir unsere kognitiven Fähigkeiten verbessern.
Darüber hinaus kann die Plastizität des Gehirns auch durch körperliche Aktivität und Umgebung beeinflusst werden. Wenn wir unser Gehirn regelmäßig durch kognitive Aktivitäten oder körperliches Training herausfordern, kann dies die Neubildung von neuronalen Verbindungen und die Verbesserung kognitiver Fähigkeiten wie Gedächtnis, Aufmerksamkeit und Problemlösung fördern.
Das Gedächtnis
Ein weiterer wichtiger Aspekt der kognitiven Funktionen des Gehirns ist das Gedächtnis. Das Gehirn ist in der Lage, Erinnerungen zu speichern und abzurufen, indem es verschiedene Formen von Gedächtnissen verwendet: Das Arbeitsgedächtnis, Kurzzeitgedächtnis und Langzeitgedächtnis. Der Hippocampus spielt eine wichtige Rolle bei der Bildung des Langzeitgedächtnisses, indem er Informationen aus dem Kurzzeitgedächtnis konsolidiert und sie in der Großhirnrinde speichert.
Die Sprache
Das Gehirn ist auch entscheidend für die Sprachfunktionen des Menschen, einschließlich der Fähigkeit, Sprache zu verstehen, zu sprechen und zu lesen. Die Sprachfunktionen des Gehirns sind hauptsächlich in der linken Hemisphäre lokalisiert und umfassen verschiedene Regionen, darunter das Broca-Areal und das Wernicke-Areal.
Das Broca-Areal ist für die Sprachproduktion zuständig, während das Wernicke-Areal das Verständnis von Sprache ermöglicht. Das Broca-Areal liegt im Stirnlappen, während das Wernicke-Areal im Schläfenlappen liegt. Sie sind durch eine dicke Nervenfaser, den fasciculus arcuatus, verbunden.
Störungen und Krankheiten des Gehirns
Das menschliche Gehirn ist ein empfindliches Organ, das anfällig für verschiedene Störungen und Krankheiten sein kann. Einige der häufigsten Störungen des Gehirns sind:
- Schlaganfall: Ein Schlaganfall tritt auf, wenn die Blutversorgung des Gehirns unterbrochen wird, was zu Schäden an den Gehirnzellen führen kann. Schlaganfälle können zu Lähmungen, Sprachproblemen und Gedächtnisverlust führen.
- Epilepsie: Epilepsie ist eine Störung des Gehirns, die zu wiederholten Anfällen führen kann. Während eines Anfalls können Betroffene Krämpfe, Bewusstseinsverlust und andere Symptome erleiden.
- Demenz: Demenz ist eine Erkrankung, die das …
Wie funktionieren Lern- und Erinnerungsprozesse?
Ungefähr 86 Milliarden Nervenzellen vernetzen sich in einem menschlichen Gehirn. Die Neurone sind über Synapsen miteinander verbunden, die darauf spezialisiert sind, Signale elektrochemisch umzuwandeln und weiterzuleiten.
Beim Lernen werden individuell und selektiv erworbene Informationen aus der Umwelt im Gedächtnis in abrufbarer Form gespeichert. Dies geschieht manchmal nur kurzfristig, manchmal auf Erfahrungen aufbauend, auch über längere Zeiträume hinweg, zum Teil sogar für das ganze weitere Leben. Lernen basiert dabei auf einer spezifischen Verstärkung von bestimmten Synapsen, an denen die Signalübertragung durch biochemische und strukturelle Modifikationen erleichtert wird (Stichworte sind hier Langzeitpotenzierung und synaptische Plastizität). Plastische Synapsen verändern hierbei ihre Struktur und ihre Übertragungseigenschaften, was die Grundlage für Lern- und Gedächtnisprozesse ist. Manchmal bilden sich beim Lernen neue Synapsen oder nicht mehr gebrauchte Synpasen werden abgebaut.
Wie gut wir lernen und uns etwas merken können, ist dabei von Faktoren wie Aufmerksamkeit, Motivation und Belohnung abhängig. Dabei werden wichtige von unwichtigen Informationen getrennt. Im Gehirn gibt es keinen zentralen Ort, an dem Informationen gespeichert werden, aber der Hippocampus ist eine zentrale Schaltstelle für viele Gedächtnisinhalte.
Blutversorgung und Schutz des Gehirns
Die Blutversorgung des Gehirns erfolgt über die rechte und linke innere Halsschlagader (Arteria carotis interna), die aus der gemeinsamen Halsschlagader (Arteria communis) entspringen, und über die Arteria vertebralis, die aus den Wirbelkörpern kommt und durch das Hinterhauptsloch in die Schädelhöhle eintritt. Durch weitere Arterien werden diese zu einem Gefäßring (Circulus arteriosus cerebri) geschlossen, der die Basis des Zwischenhirns umfasst.
Durch diesen Gefäßring wird sichergestellt, dass der Blutbedarf des empfindlichen Gehirns auch bei Schwankungen in der Blutzufuhr immer ausreichend ist. Der Gefäßring und seine Äste liegen zwischen zwei Hirnhäuten (der Spinngewebshaut und der inneren Hirnhaut) im sogenannten Subarachnoidalraum und sind dort von Liquor (Hirn-Rückenmarksflüssigkeit) umgeben, der die dünnwandigen Gefäße schützt.
Das empfindliche Gewebe im Gehirn ist durch die Blut-Hirn-Schranke gegen schädigende Substanzen im Blut (wie Gifte, Krankheitserreger, bestimmte Medikamente etc.) abgeschirmt.
Energieverbrauch des Gehirns
Der Energieverbrauch im Gehirn ist enorm hoch. Fast ein Viertel des Gesamtenergiebedarfs des Körpers entfällt auf das Gehirn. Die Glukosemenge, die täglich mit der Nahrung aufgenommen wird, wird bis zu zwei Drittel vom Gehirn beansprucht.
Entwicklung des Gehirns
Die embryonale Entwicklung des Gehirns aus dem Neuralrohr zeichnet sich einerseits durch ein besonderes Größenwachstum aus, andererseits durch ein ungleichmäßiges Dickenwachstum der Wand und besondere Knickstellen. Dadurch wird das Gehirn schon frühzeitig in mehrere Abschnitte unterteilt.
Aus der Hirnanlage bilden sich zunächst drei hintereinander liegende Abschnitte (primäre Hirnbläschen) heraus, die dann das Vorderhirn, das Mittelhirn und das Rautenhirn bilden. In der weiteren Entwicklung entstehen daraus fünf weitere, sekundäre Hirnbläschen: Aus dem Vorderhirn entwickeln sich Großhirn und Zwischenhirn. Aus dem Rautenhirn gehen die Medulla oblongata, die Brücke und das Kleinhirn hervor.
Funktionen der einzelnen Gehirnbereiche
Der Hirnstamm, der entwicklungsgeschichtlich älteste Teil des Gehirns, ist für die grundlegenden Lebensfunktionen zuständig. Er steuert die Herzfrequenz, den Blutdruck und die Atmung sowie Reflexe wie den Lidschluss-, Schluck- oder Hustenreflex.
Das Zwischenhirn weist mehrere Abschnitte auf, darunter den Thalamus und den Hypothalamus: Im Thalamus werden Sinneseindrücke verarbeitet; über den Hypothalamus werden der Schlaf-Wach-Rhythmus, Hunger und Durst, das Schmerz- und Temperaturempfinden und der Sexualtrieb gesteuert.
Das Kleinhirn koordiniert unsere Bewegungen und das Gleichgewicht und speichert erlernte Bewegungen.
Im Großhirn sitzen auf der einen Seite Sprache und Logik, auf der anderen Seite Kreativität und Orientierungssinn.
In der Hirnrinde - dem äußeren Bereich des Großhirns - sind die Lern-, Sprech- und Denkfähigkeit sowie das Bewusstsein und das Gedächtnis verankert. Hier laufen die Informationen aus den Sinnesorganen zusammen, werden verarbeitet und schließlich im Gedächtnis gespeichert.
Wie funktioniert das Gehirn?
Ein reibungsloses Funktionieren aller Organe und Gewebe im Körper sowie ein sinnvolles Verhalten sind nur möglich, wenn alle Organfunktionen von einer übergeordneten Kontrollinstanz koordiniert und kontrolliert werden und alle Informationen, die uns die Umwelt liefert, aufgenommen, verarbeitet und beantwortet werden. Diese Aufgabe leistet unser Gehirn, das Netzwerk aus Milliarden von Nervenzellen (Neuronen).
Die Gehirnzellen sind durch Synapsen, Kontaktstellen zwischen den Zellen, miteinander verbunden. Diese Kontaktstellen spielen eine wichtige Rolle bei der Verarbeitung der Nachrichten. Informationen aus dem Körper oder der Umwelt gelangen etwa in Form von Hormonen über das Blut oder als elektrische Impulse aus den Sinneszellen über Nervenbahnen bis ins Gehirn. Dort werden sie bewertet und verarbeitet. Als Reaktion werden entsprechende Signale vom Gehirn wieder ausgesendet - zum Beispiel an Muskeln, um sich zu bewegen, an Drüsen, um Sekrete zu produzieren und abzugeben, oder an Sinnesorgane, um Reize aus der Umwelt zu beantworten.
Die Lernfähigkeit des Gehirns
Das menschliche Gehirn ist das komplizierteste Organ, das die Natur je hervorgebracht hat: 100 Milliarden Nervenzellen und ein Vielfaches davon an Kontaktpunkten verleihen ihm Fähigkeiten, an die kein Supercomputer bis heute heranreicht. Eine der wichtigsten Eigenschaften ist seine Lernfähigkeit. Doch wie kann eine Ansammlung von Nervenzellen überhaupt etwas lernen? Bis vor wenigen Jahren galt unter Wissenschaftlern als ausgemacht: Das Gehirn eines Erwachsenen verändert sich nicht mehr. Heute weiß man jedoch, dass das Gehirn bis ins hohe Alter laufend umgebaut wird. Manche Neurobiologen vergleichen es sogar mit einem Muskel, der trainiert werden kann. Die Vorstellung, dass das Gehirn ein Leben lang lernfähig bleibt, ist aus wissenschaftlicher Sicht unbestritten. Anders hätte der Mensch die vielfältigen Herausforderungen, denen er im Laufe eines Lebens begegnet, auch gar nicht bewältigen können. So können wir bis ins hohe Alter eine Fremdsprache und Yoga lernen, uns Gesicht und Stimme eines neuen Arbeitskollegen merken oder den Weg zu einer neuen Pizzeria.
Lernen findet an den Synapsen statt - also den Orten, an denen die elektrischen Signale von einer Nervenzelle zur nächsten übertragen werden. Neurowissenschaftler haben herausgefunden, dass Synapsen die Effektivität der Übertragung variieren können. Man bezeichnet dieses Phänomen auch als synaptische Plastizität. So kann eine Synapse durch einen Vorgang namens Langzeitpotenzierung (LTP) verstärkt werden, indem sie mehr Botenstoff ausschüttet oder mehr Botenstoffrezeptoren bildet. Die Übertragung von Signalen kann aber nicht nur verstärkt oder abgeschwächt werden, sie kann auch überhaupt erst ermöglicht oder völlig gekappt werden. So wissen Neurowissenschaftler heute, dass Synapsen selbst im erwachsenen Gehirn noch komplett neu gebildet oder abgebaut werden können. An wenigen Stellen wie zum Beispiel im Riechsystem können sogar zeitlebens neue Nervenzellen gebildet werden. Es ist also nicht übertrieben, wenn man sagt: Unser Gehirn gleicht zeitlebens einer Baustelle.
tags: #wie #das #gehirn #funktioniert