Wenn du dich stößt, etwas berührst oder einen Gegenstand siehst, werden sogenannte Reize erzeugt. Dein Körper ist in der Lage, diese Reize, auch Erregungen genannt, erfahrbar zu machen. Jede Erregung wird zum menschlichen Gehirn geleitet, dort entschlüsselt und interpretiert. So sind wir in der Lage zu riechen, sehen, schmecken, hören und zu fühlen. Entscheidend für diesen Vorgang sind die Nervenzellen, auch Neuronen genannt. Diese sind für die Aufnahme, Weiterleitung und Verarbeitung aller Reize und ihrer Informationen verantwortlich.
Was ist ein Neuron?
Ein Neuron (auch Nervenzelle) ist die grundlegende funktionelle Einheit des Nervensystems. Es ist eine spezialisierte Zelle, die elektrische und chemische Signale empfangen, weiterleiten und verarbeiten kann. Neuronen bilden die Basis für alle Gehirn- und Nervenfunktionen wie Denken, Bewegung, Sinnesverarbeitung und Emotionen.
Um diese Funktion zu erfüllen, sind unfassbar viele Nervenzellen zu großen Netzwerken verbunden. Allein in unserem Gehirn befinden sich beispielsweise bis zu 100 Milliarden Nervenzellen.
Nervenzelle oder Neuron:
Ihre Funktion ist die Aufnahme, Weiterleitung und Verarbeitung von Information. Gliazelle bildet Isolationsschicht um Nervenzelle.
- Nervenzellen = Information
- Gliazellen = Isolierung
Aufbau eines Neurons
Ein Neuron besteht aus mehreren Abschnitten: Dendriten, Soma (Zellkörper), Axonhügel, Axon und Synapsen (Endknöpfchen).
Lesen Sie auch: Ursachen, Symptome und Behandlungen von Motoneuron-Erkrankungen
Zellkörper (Soma)
Der Zellkörper einer Nervenzelle wird Soma genannt. Es enthält den Zellkern und alle wichtigen Zellorganellen, die notwendig sind, um die Zellfunktionen zu gewährleisten. Dazu gehören unter anderem die Ribosomen, das endoplasmatische Retikulum und die Mitochondrien. Im Zellkörper, auch Soma genannt, befindet sich der Zellkern (Nukleus) mit den genetischen Informationen. Hier laufen lebenswichtige Vorgänge wie Proteinsynthese und Stoffwechsel ab. Das Soma enthält einen Zellkern und Mitochondrien.
Dendriten
Dendriten sind die verästelten Ausläufer des Somas und Kontaktstelle zu Zellen oder anderen Neuronen. Sie sind kurze Fortsätze, die Signale aufnehmen. Bei ihnen kommt ein Reiz zuerst an. Ihnen kommt dann die Aufgabe zu, diese Erregungen an das Soma weiterzuleiten. Dendriten sind feine, oft stark verzweigte Fortsätze, die vom Soma abzweigen. Ihre Hauptaufgabe: Informationen aus der Umgebung aufnehmen. An ihrer Oberfläche werden Signale von anderen Nervenzellen aufgenommen.
Axonhügel
Die Dendriten und das Soma werden an einer Stelle gebündelt und dort wird der Übergang zum Axon gebildet. An diesem sogenannten Axonhügel werden die Erregungen, die die Dendriten aufgenommen haben, gesammelt und an das Axon weitergeleitet. Dies geschieht jedoch nur dann, wenn die Reize gemeinsam ein bestimmtes elektrisches Potenzial überschreiten. Wenn jeder einzelne Reiz, der unseren Körper trifft, weitergeleitet und verarbeitet werden müsste, wäre das für den Organismus nicht machbar und wir wären nicht lebensfähig. Man spricht von einem Schwellenpotenzial, das erreicht werden muss, damit ein Reiz weitergeleitet wird. Am Übergang zwischen Soma und Axon befindet sich der Axonhügel. Dort werden Informationen bzw. elektrische Signale solange gesammelt und summiert, bis eine bestimmte Schwelle oder ein Schwellenpotential überschritten wird. Erst dann wird ein Signal an das Axon weitergeleitet. Das verhindert, dass unser Körper jedes kleinste Signal weiterleitet. Am Übergang vom Soma ins Axon sitzt der Axonhügel. An diesem sogenannten Axonhügel werden die Erregungen, die die Dendriten aufgenommen haben, gesammelt und an das Axon weitergeleitet. Dies geschieht jedoch nur dann, wenn die Reize gemeinsam ein bestimmtes elektrisches Potenzial überschreiten. Wenn jeder einzelne Reiz, der unseren Körper trifft, weitergeleitet und verarbeitet werden müsste, wäre das für den Organismus nicht machbar und wir wären nicht lebensfähig. Man spricht von einem Schwellenpotenzial, das erreicht werden muss, damit ein Reiz weitergeleitet wird.
Axon
Das Axon ist der Bereich der Nervenzelle, der die Erregungen weitergibt. Dieses kann in unterschiedlichen Längen vorliegen, beim menschlichen Körper ist es teilweise bis zu einem Meter lang. Das Axon ist der lange Fortsatz, der Impulse weiterleitet. Das Axon ist oft der längste Teil der Nervenzelle. Über dieses "Nervenfaserkabel" werden elektrische Signale vom Zellkörper fortgeleitet - manchmal über Entfernungen von mehr als einem Meter! Ein Axon kann sich dabei zu mehreren Endverzweigungen aufsplitteten, an deren Spitzen die Synapsen sitzen. Der lange Fortsatz der Nervenzelle, der aus dem Axonhügel hervorgeht, heißt Axon oder Neurit. Die Aufgabe des Axons ist die Weiterleitung der Aktionspotentiale zu Nerven- oder Muskelzellen.
Myelinscheide
Einige Axone sind in regelmäßigen Abständen von sogenannten Schwannschen-Zellen ummantelt, die aus lipidreichem Myelin besteht. Daher werden diese Ummantelungen auch Myelinscheiden genannt. Diese sind jedoch nicht durchgängig auf dem Axon vorhanden, sondern weisen Unterbrechungen auf. Diese nennt man Ranviersche Schnürringe. Bei Wirbeltieren werden die Axone häufig zudem von einer speziellen Form von Gliazellen, den sogenannten schwannschen Zellen, umgeben. Diese Zellen liegen hintereinander um das jeweilige Axon, sodass es von einer lamellenartigen Hülle umgeben wird: der Markscheide, Myelinscheide oder auch schwannschen Scheide. Viele Axone werden von einer fettreichen Schicht, der Myelinscheide, umhüllt. Sie funktioniert wie die Isolierung bei einem Stromkabel und steigert die Geschwindigkeit der Signalweiterleitung enorm: Signale "springen" von einem Ranvierschen Schnürring zum nächsten - das nennt man saltatorische Erregungsleitung. Damit die Weiterleitung der elektrischen Signale möglichst schnell und ohne Verluste funktioniert, ist das Axon sozusagen wie ein elektrisches Kabel isoliert. Dazu wird der Fortsatz durch Stütz- oder Hüllzellen umhüllt. (außerhalb von Gehirn und Rückenmark) nennst du sie auch Schwann’sche Zellen. um die Axone. Die Umhüllung ist immer wieder durch freiliegende Axonbereiche unterbrochen. . Den nicht-umhüllten Bereich eines Axons nennst du Ranvierschen Schnürring. erhöht wird. Denn die Erregung kann auch von einem Schnürring zum nächsten „springend“ weitergeleitet werden.
Lesen Sie auch: Fliegen und Drohnen im Fokus
Endknöpfchen und Synapse
Am Ende des Axons befinden sich die schon angesprochenen Endköpfchen, bzw. die Übergangsstellen zu weiteren Neuronen oder zu bestimmten Zielzellen. Diese Übergangsstellen nennt man Endknöpfchen oder auch Synapsen. An den Synapsen werden die Erregungen in chemische Reaktionen übertragen, die es ermöglicht, diese Erregungen weiterzugeben. Am Ende des Axons stehen die Synapsen. Die synaptischen Endknöpfchen bilden das Ende eines Neurons. Das elektrische Signal wird hier auf die nächste Nervenzelle oder zum Beispiel auf eine Sinnes- oder Muskelzelle übertragen. Dazu wird das elektrische Signal meist in ein chemisches Signal umgewandelt. Die Verbindung am Ende einer Nervenzelle mit einer anderen Zelle nennst du Synapse. In den meisten Fällen sind das chemische Synapsen. Das Endknöpfchen setzt chemische Moleküle in den synaptischen Spalt - die Lücke zwischen den zwei Zellen - frei. Dort binden sie an Rezeptoren und geben die Erregung weiter.
Funktion der Neuronen
Die Hauptaufgabe eines Neurons ist es, Informationen im Körper zu empfangen, zu verarbeiten und weiterzuleiten. Neuronen funktionieren dabei wie biologische Kabel: Sie nehmen Reize (zum Beispiel Berührung, Licht, Geräusche) auf und wandeln sie in elektrische Signale um. Diese Signale werden über das Axon zur nächsten Zelle oder ins Gehirn transportiert. Durch diese Kommunikation steuern Neuronen unzählige Prozesse - von simplen Reflexen bis zu komplexem Denken, Erinnern und Lernen.
Reizaufnahme und Signalverarbeitung
An ihren Dendriten empfangen Neuronen Signale von anderen Zellen oder Sinnesrezeptoren. Im Soma werden diese Impulse verrechnet. Erreichen die eingehenden Reize einen gewissen Schwellenwert, wird das Signal weitergeleitet.
Aktionspotenzial und Reizweiterleitung
Kommt es zur Signalübertragung, öffnet sich am Axonhügel eine Kaskade von Ionenkanälen. Natrium-Ionen strömen blitzartig in die Zelle (Depolarisation), das Membranpotenzial kippt, ein Aktionspotenzial entsteht. Das Aktionspotenzial läuft das Axon entlang bis zu den Synapsen. Dort sorgt ein weiterer ionengetriebener Prozess dafür, dass Neurotransmitter freigesetzt werden. Das Aktionspotential wird entlang der Axone immer weitergeleitet, ohne an Stärke zu verlieren. Wenn das Aktionspotential die Synapsen erreicht, kommt es zur Ausschüttung der Botenstoffe in den synaptischen Spalt. Die Erregungsleitung erfolgt blitzschnell und kann eine Höchstgeschwindigkeit von bis zu etwa 150 m/s, also 540 km/h, erreichen. Die Erregungen werden an den unisolierten Stellen, also den Ranvierschen Schnürringen, sprunghaft weitergegeben (saltatorische Erregungsleitung) bis zum Endköpfchen (der Synapse). Da die Reizweitergabe nur an den unisolierten Stellen erfolgen muss, ergibt sich eine hohe Geschwindigkeit.
Das Aktionspotenzial ist ein kurzer, elektrischer Impuls, der von der Nervenzelle erzeugt wird, wenn ein Reiz stark genug ist. Man kann es sich als eine Art 'Stromwelle' vorstellen, die das Axon entlangläuft. Das Aktionspotenzial sorgt dafür, dass Informationen auch über weite Strecken sehr schnell und zuverlässig innerhalb des Nervensystems übermittelt werden.
Lesen Sie auch: Die Rolle des Zellkörpers in Neuronen
Synaptische Übertragung
An der Synapse angekommen, wird das elektrische Signal meist in ein chemisches Signal, einen sogenannten Neurotransmitter, umgewandelt. Dieser überquert den synaptischen Spalt und löst in der nächsten Zelle ein neues elektrisches Signal aus.
Am Ende des Axons sitzt die präsynaptische Endigung und trifft auf die postsynaptische Membran der nächsten Zelle. Sobald ein Aktionspotenzial die präsynaptische Endigung erreicht, öffnen sich Calciumkanäle - durch den Einstrom von Calciumionen werden gespeicherte Bläschen (Vesikel) mit Neurotransmittern ausgeschüttet.
Über die synaptischen Endknöpfchen werden chemische Botenstoffe, die Neurotransmitter, freigesetzt. Neurotransmitter bewirken an den Dendriten der nachfolgenden Nervenzelle eine vorübergehende Öffnung von Ionenkanälen. An der chemischen Synapse wird das elektrische Signal in ein chemisches Signal umgewandelt. Dazu setzen die synaptischen Endknöpfchen chemische Moleküle (Neurotransmitter) in den synaptischen Spalt frei. Die Moleküle binden an Rezeptoren auf der anderen Seite des Spalts. Das führt zur Entstehung eines elektrischen Signals in der nächsten Zelle. Das Signal wird so über Nervenzellen bis in dein Gehirn geleitet. Dort wird es verarbeitet und das Gehirn erhält das Signal „Du wurdest berührt“.
Typen von Neuronen
Nicht alle Neuronen sehen gleich aus oder übernehmen dieselben Aufgaben. Die Evolution hat eine beeindruckende Palette an Nervenzelltypen hervorgebracht - spezialisiert auf die unterschiedlichsten Funktionen. Neuronen lassen sich grob nach ihrer Funktion in drei Haupttypen unterteilen:
- Sensorische (afferente) Neuronen: Sie leiten Reize von Sinnesorganen ans ZNS. Sie nehmen Reize aus der Umwelt oder dem Körperinneren auf und leiten sie an das Gehirn weiter. Die sensorischen - oder auch afferenten (= "hinführenden") - Nervenbahnen leiten die Impulse vom Sinnesorgan zum Gehirn.
- Motorische (efferente) Neuronen: Sie steuern Muskeln und Drüsen. Sie leiten Befehle vom Gehirn oder Rückenmark an Muskeln oder Drüsen. Die motorischen - oder auch efferenten (="hinaustragenden") - Nervenbahnen leiten die Impulse von Gehirn zum ausführenden Organ.
- Interneuronen: Sie verbinden Nervenzellen untereinander (v. a. im Gehirn und Rückenmark). Sie vernetzen verschiedene Neuronen untereinander - sie sind das „Schaltzentrum“ im zentralen Nervensystem und machen komplexe Reaktionen und Denkprozesse erst möglich. Interneuronen haben eine Vermittlerfunktion.
Eine andere Möglichkeit zur Klassifikation ist die Betrachtung der Funktion der Neuronen. Motorische Nervenzellen sind für die Steuerung von Bewegungen verantwortlich, sowohl im somatomotorischen Bereich als auch im vegetativen Bereich, wo sie viszeromotorisch wirken und den sympathischen oder parasympathischen Zweig des autonomen Nervensystems regulieren.
In Bezug auf die Morphologie werden Nervenzellen in verschiedene Typen unterteilt, abhängig von ihrer äußeren Form und Struktur. Hierzu gehören zum einen unipolare Nervenzellen, die in der Lage sind, sensorische Informationen von der Peripherie zum Zentralnervensystem zu leiten. Typisch für das periphere Nervensystem sind pseudounipolare Nervenzellen, die sensorische Signale von den Rezeptoren zum Zentralnervensystem weiterleiten. Der am häufigsten vorkommende Typ von Neuronen sind jedoch multipolare Nervenzellen. Diese sind für komplexe Verarbeitungsprozesse und motorische Steuerung verantwortlich. Apolare Nervenzellen hingegen weisen weder ein Axon noch Dendriten auf. Diese sind noch nicht entwickelt und haben daher noch keine Polarität.
Neuronale Netzwerke und Plastizität
Neuronen bilden keine Einzelkämpfer, sondern verschalten sich zu hochkomplexen Netzwerken. Jeder Gedanke, jede Erinnerung, jeder Lerneffekt basiert darauf, dass Verbindungen (Synapsen) angepasst, verstärkt oder gelöscht werden. Plastizität beschreibt die Fähigkeit, auf Erfahrungen, Lernen oder Verletzungen flexibel zu reagieren.
Ein bemerkenswerter Aspekt der Neuronen ist ihre Plastizität. Diese bezeichnet die Fähigkeit der Neuronen, sich an Veränderungen anzupassen. Plastizität ermöglicht es den Neuronen, sich durch wiederholte Aktivierung und Lernprozesse zu verändern und Verbindungen zu verstärken / abzuschwächen oder neue Verbindungen auszubilden.
Beispiel für die Funktionsweise der Reizweiterleitung
Nehmen wir an, jemand tippt dir von hinten auf die Schulter. Die Dendriten der Nervenzelle leiten den Reiz zum Zellkörper weiter. Die Erregung durch das Antippen ist stark genug, dass am Axonhügel ein Aktionspotential entsteht. An der chemischen Synapse wird das elektrische Signal in ein chemisches Signal umgewandelt. Dazu setzen die synaptischen Endknöpfchen chemische Moleküle (Neurotransmitter) in den synaptischen Spalt frei. Die Moleküle binden an Rezeptoren auf der anderen Seite des Spalts. Das führt zur Entstehung eines elektrischen Signals in der nächsten Zelle. Das Signal wird so über Nervenzellen bis in dein Gehirn geleitet. Dort wird es verarbeitet und das Gehirn erhält das Signal „Du wurdest berührt“.
Vielleicht hast du schon einmal bemerkt, wie schnell du deine Hand von einer heißen Herdplatte zurückziehst, wenn du sie aus Versehen berührst. Diese schnelle Reaktion wird durch deine Nervenzellen ermöglicht. Die Nervenzellen leiten die Botschaft von deiner Hand über dein Rückenmark zu deinem Gehirn und zurück, um eine Reaktion auszulösen und dich zu schützen.
Neurotransmitter und ihre Bedeutung
Die Überbrückung des synaptischen Spalts übernehmen Überträgersubstanzen: Botenstoffe, die Neurotransmitter genannt werden. Es gibt mindestens 50 verschiedene Botenstoffe, die der Erregungsleitung zwischen den Neuronen dienen. Zu den bekannten Neurotransmittern gehören zum Beispiel Noradrenalin, Acetylcholin, Dopamin und Serotonin. Der Überträgerstoff entscheidet darüber, ob die nachgeschaltete Nervenzelle, eine Drüse oder ein Muskel aktiviert oder gehemmt wird.
Acetylcholin ist ein Neurotransmitter, der aktivierend auf die Skelettmuskulatur wirkt, Noradrenalin ein Transmitter, der je nach Zelle, an die er abgegeben wird, fördert oder hemmt. Noradrenalin wird überwiegend im Sympathikus ausgeschüttet und aktiviert die Herzmuskelzellen, während es die Muskelzellen des Darms hemmt.
Drogen sind Wirkstoffe, die den Neurotransmittern im Aufbau sehr ähnlich sind. Deshalb wirken sie auf dieselben Synapsen. Nikotin ist dem Acetylcholin verwandt und wirkt anregend. Curare, das Pfeilgift der Indios, hingegen bindet zwar auch an den Rezeptoren, die normalerweise für das Acetylcholin zur Verfügung stehen, hemmt diese jedoch. So kann keine neue Erregung durch Acetylcholin erfolgen. Opiate haben eine ähnliche Struktur wie Endorphin - ein Neurotransmitter, der Glücksgefühle im Gehirn auslöst.