Aktionspotential der Nervenzelle: Eine einfache Erklärung

Das Aktionspotential ist ein grundlegendes Konzept in der Neurobiologie und beschreibt die Art und Weise, wie Nervenzellen (Neuronen) miteinander kommunizieren. Es ist essenziell für die Reizweiterleitung im Körper und somit für alle unsere Funktionen, von der Bewegung bis zum Denken.

Was ist ein Aktionspotential?

Ein Aktionspotential (AP) ist eine kurzzeitige Veränderung des elektrischen Membranpotentials einer Zelle. Es dient zur Reizweiterleitung zwischen Nervenzellen. Man kann es sich als einen Nervenimpuls vorstellen, der für die Weiterleitung von Reizen verantwortlich ist. Die Übertragung von Reizen findet in Nervenzellen statt und äußert sich als Änderung des Membranpotentials.

Jeder Reiz, den man auch als Erregung bezeichnet, wird durch solche Potentiale weitergegeben, damit er schlussendlich im Gehirn ankommt und interpretiert werden kann. Daher sind die Aktionspotentiale essentiell für das menschliche Leben. Alle Vorgänge des menschlichen Körpers werden auf diese Weise reguliert.

Ruhepotential: Die Ausgangslage

Die Membran einer Nervenzelle ist elektrisch geladen. Man spricht von dem sogenannten Membranpotential. Solange kein Aktionspotential entsteht, spricht man vom Ruhepotential. Dieses liegt bei ungefähr -70 mV. Dann bezeichnest du das Membranpotential auch als Ruhepotential.

In dieser Ausgangslage sind die spannungsgesteuerten Ionenkanäle der Membran geschlossen. Darüberhinaus besteht keine Ladungsdifferenz zwischen dem Inneren und dem Äußeren der Membran. Das Ruhepotential wird dadurch aufrechterhalten, dass Osmose für Einstrom von Natrium-Ionen und auch für Ausstrom von Kalium-Ionen durch die semipermeable Membran sorgt.

Lesen Sie auch: Herz- versus Nervenzellen: Aktionspotential

Die Konzentration der Kaliumionen ist im Zellinneren hoch, während die Natriumkonzentration außerhalb der Zelle höher ist. Die in der Membran liegenden spannungsgesteuerten Natrium- und Kaliumkanäle sind zunächst geschlossen.

Die Natrium-Kalium-Pumpe reguliert die Ionenverteilung für das Ruhepotential, indem sie Natrium-Ionen in den extrazellulären und Kaliumionen in den intrazellulären Raum der Nervenzelle pumpt. (3 Na+ raus, 2 K+ rein --> daher ein negatives Vorzeichen beim Ruhepotential, denn es gehen mehr positive Ladungen raus als hinein).

Für das Ruhepotential, das sich im Gleichgewicht befindet sind zwei Kräfte verantwortlich. Zum einen der Konzentrationsgradient und zum anderen der Ladungsausgleich. Alle Teilchen streben eine Gleichverteilung, also die gleiche Konzentration, an. Die Aufrechterhaltung des Ruhepotentials in der Nervenzelle ist ein komplexer Prozess, der durch verschiedene Faktoren beeinflusst wird. Die beständige Tätigkeit der Natrium-Kalium-Pumpe trägt wesentlich zur Aufrechterhaltung des Ruhepotentials der Nervenzelle bei. Diese Balance zwischen chemischen und elektrischen Kräften ist entscheidend für die Stabilität des Ruhepotentials und Aktionspotentials.

Der Auslöser: Ein Reiz überschreitet die Schwelle

Ein am Axonhügel eines Neurons ankommender Reiz erhöht die Spannung an der Zellmembran. Nur wenn dieser Reiz die Spannung über einen Schwellenwert von etwa -50 mV erhöht, wird ein Aktionspotential ausgelöst. Ein zu schwacher Reiz erreicht nicht den Schwellenwert.

Sollte dieser Schwellenwert nicht erreicht werden, wird der Reiz nicht weitergegeben (Alles oder nichts Gesetz). Unter dem ‚Alles-oder-Nichts-Gesetz‘ verstehst du, dass ein Aktionspotential entweder in voller Größe oder gar nicht auftritt. Das bedeutet, dass die Reizschwelle entweder überschritten und ein Aktionspotential ausgelöst wird oder eben nicht. Nein, ein starker Reiz kann kein größeres Aktionspotenzial auslösen. Sobald der Schwellenwert erreicht ist, läuft das Aktionspotential immer gleich ab - egal, wie stark der Reiz war.

Lesen Sie auch: Grundlagen der Nervenimpulse

Die Phasen des Aktionspotentials: Ein detaillierter Blick

Du siehst, dass du den Verlauf eines Aktionspotentials in fünf verschiedene Phasen einteilen kannst. Übrigens: Die verschiedenen Schritte verlaufen sehr schnell hintereinander. So dauert ein Aktionspotential in den Nervenzellen nur ca.

1. Depolarisation: Die Ladungsumkehr

Als Reaktion auf den überschrittenen Schwellenwert, läuft das Aktionspotential über das Axon. Dabei werden spannungsgesteuerte Natrium- ($Na^+$) Ionenkanäle geöffnet. $Na^+$ gelangt in das Zellinnere. Dadurch, dass die Natriumionen positiv geladen sind, kommt es zu einer Depolarisierung der Membran. Der intrazelluläre Raum wird durch die große Menge an $Na^+$ positiv geladen. Die in der Membran befindlichen Kalium- ($K^+$) Kanäle sind zu dem Zeitpunkt geschlossen.

Oder auch Depolarisierung verstehst du die Anstiegsphase des Aktionspotentials. Das funktioniert so: Der Anstieg des Membranpotentials über einen Wert von etwa -50 mV führt zur Öffnung spannungsabhängiger Natriumkanäle in der Membran. Die Konzentration von Natriumionen ist außerhalb der Zelle deutlich höher als im Zellinnenraum. So kommt es zu einem schlagartigen Einstrom positiv geladener Natriumionen in das Zellinnere des Axons. Das führt zur Öffnung weiterer Natriumkanäle und stellt somit eine positive Rückkopplung dar. So kommt es sogar zur Ladungsumkehr. Die Innenseite ist jetzt also nicht mehr negativ, sondern positiv geladen.

2. Repolarisation: Rückkehr zum negativen Potential

Nach ca. 1-2 ms schließen sich de $Na^+$- Kanäle wieder und die $K^+$- Kanäle öffnen sich. $K^+$ diffundert aus dem Zellinneren in Richtung des nun positiver geladenen extrazellulären Raums. Einerseits werden die $K^+$-Ionen durch den Spannungsunterschied (Außen wurde es weniger positiv, da Na+ ins Zellinnere eingedrungen ist) nach "Außen" gezogen, andererseits sorgt der "Drang" des Konzentrationsausgleichs dafür, dass die Ionen in den kaliumarmen Raum diffundieren. Das hat zur Folge, dass die Spannung im Zellinneren wierde abnimmt. Diesen Vorgang nennt man auch Repolarisation.

Die Repolarisation ist die Phase des Aktionspotentials, bei der sich das Membranpotential wieder dem Ruhepotential nähert. Bevor das Maximum des Membranpotentials erreicht ist, beginnen die Natriumkanäle sich wieder zu schließen. Gleichzeitig beginnen sich die spannungsgesteuerten Kaliumkanäle zu öffnen. Das Zelläußere ist jetzt im Vergleich zum Inneren der Zellen negativ geladen und die Kaliumkonzentration außerhalb der Zelle ist niedriger.

Lesen Sie auch: Das Aktionspotential im Detail

3. Hyperpolarisation: Ein kurzzeitiger Tiefpunkt

Nun schließen sich auch die $K^+$-Kanäle wieder. Dies nimt jedoch mehr Zeit in Anspruch, als bei den $Na^+$-Kanälen. Das bedeutet, dass weiterhin $K^+$-Ionen aus dem intrazellulären Raum gelangen können. Das hat zur Folge, dass die Spannung in der Zelle unter das Nivau des Ruhepotentials sinkt. Diesen Zustand nennt man Hyperpolarisation. Da das Schließen der Kaliumkanäle länger dauert, als das der Natriumkanäle, kann es sogar zur Unterschreitung des Ruhepotentials kommen. weiter Kaliumionen aus der Zelle. Die Spannung sinkt deshalb unter den Ausgangswert.

4. Refraktärzeit: Eine kurze Pause

Nach dem Ablauf des Aktionspotentials kann nicht direkt die nächste Erregung weitergeleitet werden. Es dauert eine kurze Zeit bis eine Zelle wieder erregbar ist. Die Zeit, in der die Kanäle inaktiv sind, heißt Refraktärzeit. Sie ist wichtig für eine unidirektionale Weiterleitung eines Reizes. Du kannst im Verlauf des Aktionspotentials zwei Phasen der Refraktärzeit unterscheiden.

Kurz nach der Umpolarisierung können sich die Natriumkanäle erstmal gar nicht öffnen. Das ist die absolute Refraktärphase. Nach der Repolarisation wird der Schwellenwert zur Öffnung der Kanäle wieder niedriger, bis er wieder auf den Normalwert sinkt. Diese Phase, bei der du stärkere Reize für die Auslösung eines Aktionspotentials benötigst, heißt relative Refraktärzeit.

5. Wiederherstellung des Ruhepotentials: Die Natrium-Kalium-Pumpe

Damit die Zelle bereit für ein neues Aktionspotential ist, muss die ursprüngliche Ionenverteilung wieder hergestellt werden. (Natrium-Kalium-ATPase). Unter Energieverbrauch pumpt sie Natrium aus der Zelle heraus und Kalium in die Zelle zurück. Somit hält sie das Ruhepotential der Zelle aufrecht.

Bei diesem Zustand beibt es jedoch nicht. Die $K^+$- und $Na^+$-Kanäle sind nun wieder geschlossen und bleiben ungefähr 2 ms inaktiv, sodass kein weiteres Aktionspotential unmittelbar anknüpfen kann. Das ist die sogenannte Refraktärzeit, sie sorgt dafür, dass ein Aktionspotential nur in eine Richtung, nämlich zur Synapse, und nicht wieder zum Soma läuft. Die $Na^+$$K^+$-Pumpe sorgt dann im Folgenden für den Austausch der beiden Ionen in die Zelle beziehungsweise aus ihr heraus, bis die ursprüngliche Konzentrations- bzw. Ionenverteilung wieder hergestellt ist (Ruhepotential).

Die Bedeutung des Aktionspotentials

Das Aktionspotential ist ein zentrales Element für die gesamte Erregungsleitung zwischen Nervenzellen. Das Aktionspotential sorgt dafür, dass Informationen schnell durch den Körper geleitet werden. Die Axone mancher Neuronen sind von Hüllzellen umgeben. Sie übernehmen isolierende Funktion. In gewissen Abständen befinden sich Einschnürungen zwischen den Hüllzellen. Nur an diesen Einschnürungen kann es zum Aktionspotenzial beziehungsweise zum Ladungsausgleich zwischen den Schnürringen kommen. Die Weiterleitung ist an Axonen mit Hüllzellen springend und schnell.

tags: #aktionspotential #nervenzelle #definition #einfach #erklärt