Die Funktionsweise von Nervenzellen und die Weiterleitung elektrischer Impulse sind grundlegende Prozesse für die Steuerung unseres Körpers. Von einfachen Reflexen bis hin zu komplexen Denkprozessen - all das basiert auf der Kommunikation zwischen Nervenzellen, den sogenannten Neuronen. Diese Kommunikation erfolgt über elektrische und chemische Signale, die in einem ausgeklügelten Zusammenspiel unsere Reaktionen und Handlungen ermöglichen.
Die Grundlagen der Nervenzelle
Unser Nervensystem besteht aus etwa 100 Milliarden Nervenzellen, die miteinander vernetzt sind und dadurch zu komplexen Rechenleistungen in der Lage sind. Neuronen sind spezialisierte Zellen, die Informationen verarbeiten und weiterleiten. Sie bestehen typischerweise aus einem Zellkörper (Soma) mit Fortsätzen, den Dendriten und einem Axon.
- Dendriten: Die Dendriten bilden die Antennenregion der Nervenzelle und empfangen Signale von anderen Neuronen.
- Axonhügel: Der Axonhügel sammelt die bei den Dendriten eingehenden elektrischen Potenziale. Nur wenn eine bestimmte Potenzialschwelle überschritten wird, gibt der Axonhügel das elektrische Potenzial an das Axon weiter. Dies ist eine Art Schutzmaßnahme des Nervensystems, um eine Reizüberflutung, die nicht verarbeitet werden kann, zu verhindern.
- Axon: Das Axon ist ein langer, kabelartiger Fortsatz, der elektrische Impulse vom Zellkörper weg transportiert. Am Ende des Axons befinden sich die Synapsen.
- Synapsen: Die Synapsen sind Kontaktstellen zu anderen Nervenzellen, Muskelzellen oder Drüsenzellen, über die die Signale übertragen werden.
Das Ruhepotential: Die Grundlage für Erregbarkeit
Solange ein Neuron nicht „feuert“, befindet es sich im Ruhezustand. In dieser Phase herrscht an der Außenhaut der Zelle, der Membran, eine bestimmte Spannung, das Ruhepotenzial vor. Wenn kein Reiz weitergegeben werden muss, zeigt das Neuron folgende Verteilung elektrischer Ladung: Im Zellinneren herrscht eine hohe Konzentration an Kaliumionen (K+) und organischen Anionen (zum Beispiel Eiweiß), während außerhalb überwiegend Natrium- (Na+) und Chloridionen (Cl-) anzutreffen sind. Im Ruhezustand besteht ein Gleichgewicht zwischen der Zellinnen und -außenseite, das durch verschiedene Transportmechanismen (Kaliumkanäle und Natrium-Kalium-Pumpen) aufrechterhalten wird (Ruhepotential). Auf der Innenseite der Zellmembrane ist die Ladung zunächst negativ. Das Ruhepotenzial einer tierischen Nervenzelle beträgt etwa -75 mV.
Wie entsteht in der Zelle eine Spannung, die elektrische Impulse bewirkt? Die im Inneren der Zelle befindlichen negativ geladenen organischen Stoffe können die Membran des Axons nicht passieren, während die positiv geladene Kaliumionen durchaus durch die Membran treten können. Kaliumionen sind in hoher Zahl im Zellinneren vorhanden und strömen naturgemäß vom Ort der höheren Konzentration weg. Gleichzeitig verlassen damit jedoch positive Ladungen das Zellinnere. Dadurch erhält das Zellinnere eine negative Ladung. Deshalb werden nach einer gewissen Zeit Kaliumionen wieder angezogen. Es entsteht ein Gleichgewicht zwischen den ausströmenden Kaliumionen und den vom negativen Zellinneren angezogenen. In der Summe stellt sich eine negative Spannung des Zellinneren gegenüber dem Zelläußeren - das Ruhepotenzial - ein.
Das Aktionspotential: Der elektrische Impuls
Wird das Neuron entsprechend gereizt, etwa durch eine andere Nervenzelle oder einen sensorischen Input, entsteht an der Membran des Axons eine veränderte elektrische Spannung, die sich bis zu den Synapsen fortpflanzt. Man spricht vom Aktionspotenzial, das beim Menschen etwa eine Millisekunde andauert. Bei der Übertragung von Informationen im Nervensystem und der Kontraktion von Muskeln spielen Aktionspotenziale eine entscheidende Rolle. Ein Aktionspotenzial entsteht, wenn eine Nervenzelle durch einen Reiz ausreichend erregt wird. Dieser Reiz kann zum Beispiel eine elektrische Spannungsänderung sein, die an der Zellmembran auftritt.
Lesen Sie auch: Synaptische Übertragung einfach
Im Falle eines elektrischen Impulses, der durch einen Reiz ausgelöst wurde, öffnen sich unter anderem die Natrium-Kanäle der Zellmembran und Natriumionen strömen vermehrt ins Zellinnere. Dies bedeutet, dass abschnittsweise die Ladung an der Innen- und Außenseite des Neurons umgekehrt wird. Durch diese lokale Ladungsänderung wird der elektrische Impuls entlang des Axons bis zum Ende weitertransportiert.
Der Wechsel vom Ruhe- zum Aktionspotenzial erfolgt, indem bestimmte Ionen über die Zellmembran des Axons ein- und ausströmen. Im Ruhezustand sind mehr Kalium-Ionen im Inneren des Axons, während sich außerhalb mehr Natrium-Ionen befinden. Da Kalium-Ionen im Ruhezustand besser durch die Membran nach außen wandern können als Natrium-Ionen in die umgekehrte Richtung, herrscht an der Außenseite der Membran ein positiv geladenes Milieu, im Inneren der Zelle ein negatives. Dadurch entsteht eine Spannung über der Membran, die bei etwa -70 Millivolt liegt. Kommt ein geeigneter Reiz, öffnen sich in der Membran kurzzeitig Ionen-Kanäle, über die sehr schnell positiv geladene Natrium-Ionen einströmen. Nun wird das Potenzial im Inneren positiver, mehr Kanäle öffnen sich, man spricht von einer Depolarisation. Nur wenn diese stark genug ist, sie also einen bestimmten Schwellenwert überschreitet, tritt das Aktionspotenzial als eine Art explosionsartige Umpolarisierung der Membran auf („Alles-oder-Nichts-Prinzip“).
Während das Aktionspotenzial wie eine Welle das Axon entlangschießt, beginnt am Axonhügel nahe dem Zellkörper bereits die Repolarisation: Kalium-Ionen treten über sich jetzt öffnende eigene Kanäle nach außen, während sich die Natrium-Kanäle wieder schließen. Das Ungleichgewicht der Ladungen verringert sich, bis der Ruhezustand wieder erreicht ist. Im Folgenden sorgen dann aktive Natrium-Kalium-Pumpen dafür, dass die eingeströmten Natrium-Ionen wieder nach außen und die Kalium-Ionen nach innen transportiert werden. Die Fortführung des Aktionspotenzials entlang des Axons kann nur in eine Richtung erfolgen, da die zurück liegende Membran nicht erregt werden kann.
Das "Alles-oder-Nichts"-Prinzip
Die elektrische Weiterleitung funktioniert nach dem Alles-oder-Nichts-Prinzip: Erst wenn die Stärke des Signals einen Schwellenwert übersteigt, wird im Axon das Aktionspotenzial generiert. Bleibt der Reiz unterhalb des Schwellenwerts, feuert die Zelle gar keinen Impuls ab; überschreitet er ihn, entsteht das Aktionspotenzial, dessen Form und Größe aber immer gleich ist, egal wie stark der Schwellenwert überschritten wurde. Die Information über die Stärke einer Erregung ist in der Anzahl der Aktionspotenziale und ihrem zeitlichen Abstand zueinander, der Frequenz, codiert. Besonders starke Reize lösen besonders viele und dicht aufeinanderfolgende Aktionspotenziale aus. Pro Sekunde kann eine Nervenzelle bis zu 500mal feuern.
Saltatorische Erregungsleitung
Viele Axone im peripheren Nervensystem (der Teil des Nervensystems, der nicht zu Gehirn und Rückenmark gehört) werden durch einen Mantel aus speziellen Zellen (Schwann-Zellen = Hüll- und Stützzellen) elektrisch isoliert. Dabei entsteht keine durchgängige Umhüllung. Die Abschnitte, an denen das Axon frei liegt, werden Ranviersche Schnürringe genannt und dienen einer schnelleren Übertragung von Nervensignalen - die Erregung wird hierbei in Sprüngen von einem Schnürring zum nächsten weitergegeben (saltatorische Erregungsleitung).
Lesen Sie auch: Funktion und Nutzen elektrischer Nervenimpulse
Die Axone mancher Neuronen sind von Hüllzellen umgeben. Sie übernehmen isolierende Funktion. In gewissen Abständen befinden sich Einschnürungen zwischen den Hüllzellen. Nur an diesen Einschnürungen kann es zum Aktionspotenzial beziehungsweise zum Ladungsausgleich zwischen den Schnürringen kommen. Die Weiterleitung ist an Axonen mit Hüllzellen springend und schnell. Die Geschwindigkeit der elektrischen Weiterleitung hängt neben der Dicke des Axons (dicke Axone leiten schneller, dünne langsamer) auch von bestimmten Helferzellen ab, welche die Nervenfaser ummanteln: Im Gehirn und im Rückenmark sind das die Oligodentrozyten, im peripheren Nerv die Schwannzellen. Beide sind zwei Typen von Glia-Zellen.
Sie bilden häufig dichte, spiralförmige Hüllen um das Axon, die wie Perlen auf der Kette aufgereiht und von kleinen Aussparungen unterbrochen werden. Die Hüllen nennt man Myelin-Scheiden, die Lücken dazwischen Ranvier´sche Schnürringe. Die Myelin-Scheiden funktionieren wie die Isolierung eines Kabels. An diesen Stellen kann kein Aktionspotenzial entstehen - was dazu führt, dass sich der elektrische Impuls nicht kontinuierlich fortsetzt, sondern die Isolier-Bereiche einfach überspringt.
Multiple Sklerose
Bei der Krankheit der Multiplen Sklerose kommt es zur autoimmunen Entzündung und anschließenden Demyelinisierung der Nervenfasern im zentralen Nervensystem.
Synaptische Übertragung: Von elektrisch zu chemisch und zurück
Am synaptischen Endknöpfchen, was dem Ende des Axons entspricht, wird der elektrische Impuls in ein chemisches Signal umgewandelt. Das elektrische Potenzial, das dort ankommt, löst die Ausschüttung chemischer Botenstoffe (sogenannte Neurotransmitter) aus. Dort löst der Neurotransmitter erneut einen elektrischen Impuls aus, der wieder am Axon entlangwandert und so von Zelle zu Zelle weitergegeben wird. Nervenzellen sind miteinander durch Synapsen verbunden, an denen Signale in Form von Botenstoffen übertragen werden. Die Synapsen sind die zentralen Schaltstellen der Informationsübertragung im Gehirn. Jede Nervenzelle hat bis zu 10.000 davon, im Extremfall sogar mehr als 100.000.
Da aber die synaptischen Endigungen der Senderzelle die Empfängerzelle nicht direkt berühren, bleibt ein winziger Spalt von 20 bis 50 Nanometern zwischen beiden. Um diese Barriere zu überwinden, nutzen die meisten Synapsen chemische Botenstoffe - wenngleich es auch einige gibt, die rein elektrisch arbeiten. Im Folgenden wird die chemische Signalübertragung näher betrachtet.
Lesen Sie auch: vKIT und Kleinhirnerkrankungen
Die Rolle der Neurotransmitter
Die präsynaptischen Nervenenden enthalten die als Neurotransmitter bezeichneten Signalmoleküle, die in kleinen membranumschlossenen Vesikeln gespeichert sind. Jedes Nervenende im zentralen Nervensystem enthält durchschnittlich mehrere 100 synaptische Vesikel. Dennoch gibt es hier große Unterschiede: So gibt es beispielsweise Spezialisten unter den Synapsen, die mehr als 100.000 Vesikel enthalten. Dazu zählen die Synapsen, die unsere Muskeln steuern.
Wenn ein elektrisches Signal im Nervenende eintrifft, werden Calcium-Kanäle in der Plasmamembran aktiviert, durch die Calcium-Ionen vom Außenraum in das Innere der Synapse strömen. Sie treffen auf eine molekulare Maschine, die sich zwischen der Membran der Vesikel und der Plasmamembran befindet und die durch die hereinströmenden Calcium-Ionen aktiviert wird. Diese Maschine bewirkt, dass die Membran der Vesikel, die sich in der Startposition befinden, mit der Plasmamembran verschmilzt.
Auf der anderen Seite des synaptischen Spaltes treffen die Botenstoffe auf Andockstellen in der Membran des Empfänger-Neurons, die die elektrischen Eigenschaften dieser Membran regulieren. Dadurch ändert sich der Membranwiderstand. Die Empfängerzelle kann die Spannungsänderung, die dadurch entsteht, in einem rasanten Tempo verarbeiten Zwischen dem Eintreffen des Impulses bis zur Spannungsänderung auf der anderen Seite des synaptischen Spalts vergeht nur etwa eine tausendstel Sekunde. Damit stellt die synaptische Übertragung einen der schnellsten biologischen Vorgänge dar.
Die synaptischen Vesikel sind keineswegs nur eine Art membranumhüllte „Konservendose“ zur Speicherung der Botenstoffe. In ihrer Membran befindet sich eine ganze Reihe von Proteinen, die sich seit Millionen von Jahren durch die Evolution kaum verändert haben. Eine Gruppe dieser Proteine, die Neurotransmitter-Transporter, ist dafür verantwortlich, die Botenstoffe aus dem Zellplasma in die Vesikel hineinzupumpen und dort anzureichern. Dazu ist viel Energie erforderlich. Diese wird von einem weiteren Proteinmolekül bereitgestellt, einer Protonen-ATPase (V-ATPase), die unter Verbrauch von Adenosintriphosphat (ATP) Protonen in die Vesikel hineinpumpt. Neben diesen für das „Auftanken“ erforderlichen Proteinen enthalten die Membranen synaptischer Vesikel weitere Komponenten, die dafür sorgen, dass die Vesikel mit der Plasmamembran verschmelzen können (darunter das SNARE-Protein Synaptobrevin und den Calcium-Sensor Synaptotagmin) und nach der Membranfusion wieder in das Nervenende zurücktransportiert werden. Die synaptische Vesikel werden anschließend im Nervenende über einige Zwischenschritte wieder recycelt und neu mit Botenstoffen befüllt.
Rezeptoren und postsynaptische Potentiale
Am postsynaptischen Neuron gibt es kompetente Annahmestellen für die Information: die Rezeptormoleküle. Jeder Rezeptor ist auf einen bestimmten Neurotransmitter spezialisiert wie ein Schlüssel und ein passendes Schloss. Die Neurotransmitter erzeugen in der Empfängerzelle das so genannte postsynaptische Potenzial, eine Veränderung im Membranpotenzial des Neurons: Das chemische Signal wird also wieder in ein elektrisches zurückübersetzt.
Aber Achtung: Die Wirkung der Neurotransmitter ist nicht immer exzitatorisch, also erregend. Sie können auch inhibitorisch, hemmend agieren und so die Entstehung eines neuen Aktionspotenzials verhindern (Alles-oder-Nichts-Prinzip).
Elektrische Synapsen
Neben chemischen Synapsen wurden auch elektrische Synapsen entdeckt. Bei dieser elektrischen Kommunikation zweier Zellen spielen so genannte ‚gap junctions‘ eine Rolle - aus Proteinen bestehende Kanäle, die die Zellflüssigkeiten von zwei Neuronen verbinden. So können elektrische Signale Ionenströme durch diese Kanäle ohne Umwege direkt von Zelle zu Zelle weitergeben. „Mit gap junctions kann man viele Zellen über eine größere Entfernung miteinander synchronisieren“, sagt Nils Brose, Direktor der Abteilung für Molekulare Neurobiologie am Max-Planck-Institut für Experimentelle Medizin. „Wenn eine Zelle ein Signal erhält, dann geht das gleich auf die anderen Zellen über, da sie wie Stecker und Steckdose miteinander verbunden sind.“ Das mobilisiert in kürzester Zeit größere Nervenzellgruppen. Obwohl das sehr effizient klingt, kommt diese rein elektrische Form der Weiterleitung eher bei einfacher entwickelten Tieren wie Krebsen vor, wo sie zum Beispiel schnelle Fluchtreaktionen steuern.
Axone: Die "Kabel" des Nervensystems
Ein Axon ist gewissermaßen ein Kabel im menschlichen Nervensystem - sogar mit einer eigenen Isolierschicht. Diese wichtigen Stränge ermöglichen die Kommunikation von Zellen untereinander und sichern so ein reibungsloses Funktionieren des Organismus. Ein Axon, synonym auch Neurit oder Neuraxon genannt, ist ein Fortsatz einer Nervenzelle (Neuron). Es leitet elektrische Impulse vom Zellkörper (Soma) aus weg. Das Axon entspringt dort, wo am Zellkörper der Nervenzelle die Nervenimpulse entstehen. Dieses Gebiet bezeichnet man als “Axonhügel”. Anschließend verläuft der Neurit wie ein Strang zu seinem Zielort. Die Länge ist dabei sehr variabel: Axone können lediglich Bruchteile eines Millimeters oder aber bis über einen Meter lang sein. Am Ende verzweigt sich das Axon baumartig in knopfartige Endigungen, welche man auch “Telodendren” nennt. Die Telondendren haben wiederum Kontakt mit Nervenzellen (eine Synapse entsteht), Muskel- oder Drüsenzellen. Weitere Bestandteile eines Neurits sind die Zellmembran (Axolemm) und das Zytoplasma (Axoplasma). Manche Axone, sogenannte “markhaltige” Fasern, besitzen darüber hinaus einen weiteren wichtigen Bestandteil: die Myelinscheide. Hierbei handelt es sich um eine Umhüllung, die sich vor allem aus Lipiden zusammensetzt. Allerdings wird die Myelinscheide alle 0,1 bis 1,5 Millimeter unterbrochen. Die Funktion der Myelinscheide gleicht der Aufgabe bei der Hülle eines Kabels, denn auch die Myelinschicht dient der elektrischen Isolierung. Somit kann eine deutlich schnellere Weiterleitung der elektrischen Impulse erreicht werden.
Klassifizierung von Axonen
Neuriten lassen sich anhand verschiedener Kriterien klassifizieren. Wie bereits erwähnt, lassen sie sich in marklose und markhaltige Fasern einteilen. Eng verbunden mit der Ummantelung ist natürlich auch die Leitungsgeschwindigkeit der Axone. Die Faserqualität beschreibt gewissermaßen, zu welchem Teil des Nervensystems ein Neurit gehört und welche Funktion innerhalb dieses Systems ausgeführt wird. Des Weiteren ist es wichtig, ob das Axon eine Bewegung veranlasst (motorisch) oder eine Empfindung wahrnimmt (sensibel). Nun besitzen die Hirnnerven zum Teil noch speziellere Funktion, wie beispielsweise die Innervation von Kiemenbogenmuskeln oder die sensorische Wahrnehmung.
Axonaler Transport
Axone sind für die Weiterleitung elektrischer Signale (Aktionspotentiale) vom Zellkörper zur Zielzelle verantwortlich. Außerdem findet im Neurit selber ein axonaler Transport statt. Dadurch können beispielsweise Bestandteile von Synapsen, Zellorganellen oder Vesikel innerhalb des Nervensystems transportiert werden. Der anterograde Transport erfolgt über das Motorprotein Kinesin, der retrograde über Dynein.
Schaden am Axon
Wenn es zum Beispiel im Rahmen eines Unfalls zu einer Durchtrennung eines Axons kommt, degenerieren Teile der betroffenen Neurone. Dies führt anschließend zu Problemen bei der Signalweiterleitung.
Neuronale Informationsverarbeitung
Neuronale Informationsverarbeitung: Aus den eingehenden, meist chemischen Signalen werden im Neuron elektrische Potenziale - wenn die Botschaft wichtig war. Kommen genug wichtige Botschaften zusammen, sendet das Neuron selbst ein Aktionspotenzial.
Funktionelle Elektrostimulation (FES)
Die funktionelle Elektrostimulation (FES) nutzt die Aktionspotenziale im Körper, um gezielt Muskeln oder Nerven zu stimulieren. Bei der funktionellen Elektrostimulation werden externe elektrische Impulse erzeugt, um Muskeln oder Nerven zu stimulieren und Bewegungen auszulösen. Die elektrischen Impulse der funktionellen Elektrostimulation aktivieren die Muskeln, indem sie die natürlichen elektrischen Signale imitieren. Durch die gezielte Anregung der Muskeln können Bewegungen erzeugt werden, wenn die körpereigene Steuerung nicht oder nicht ausreichend funktioniert. Mehrkanalstimulatoren wie KT Motion fördern den Ausgleich fehlender Funktionen bei peripheren und zentralen Lähmungen. Bis zu vier Muskelgruppen können stimuliert und komplexe, alltagsrelevante Bewegungen gezielt ausgeführt werden. Mit KT Motion können Patienten mehrmals täglich bequem von zuhause aus verloren gegangene Bewegungen trainieren.
tags: #elektrischer #impuls #nervenzelle