Das Gehirn für Einsteiger: Aufbau und Funktion

Das Gehirn ist ein faszinierendes und komplexes Organ, das als Steuerzentrale unseres Körpers fungiert. Es steuert unser Denken, Verhalten, Empfinden und viele lebenswichtige Funktionen. Dieser Artikel bietet einen umfassenden Einblick in den Aufbau und die Funktionsweise des Gehirns, seine verschiedenen Bereiche und wie es den Körper steuert.

Was ist das Gehirn?

Das Gehirn (Encephalon) ist der Teil des zentralen Nervensystems, der sich innerhalb des knöchernen Schädels befindet und diesen ausfüllt. Es besteht aus unzähligen Nervenzellen, die über zuführende und wegführende Nervenbahnen mit dem Organismus verbunden sind und ihn steuern. Das Gehirnvolumen beträgt beim Menschen etwa 20 bis 22 Gramm pro Kilogramm Körpermasse. Das Gewicht des Gehirns macht mit 1,5 bis zwei Kilogramm ungefähr drei Prozent des Körpergewichts aus.

Ein Mensch hat ungefähr 100 Milliarden Gehirnzellen, die das zentrale Nervensystem, unser Gehirn, aufbauen und untereinander verknüpft sind. Die Zahl dieser Verknüpfungen wird auf 100 Billionen geschätzt. Die Nervenzellen im Gehirn sind eingebettet in ein stützendes Gewebe aus Gliazellen.

Schutz des Gehirns

Das Gehirn ist von drei Hirnhäuten umgeben: Dura mater, Arachnoidea und Pia mater. Diese Schutzhüllen und die Hirn-Rückenmarksflüssigkeit (Liquor) schützen das Gehirn vor Verletzungen und schädlichen Substanzen. Das empfindliche Gewebe im Gehirn ist durch die Blut-Hirn-Schranke gegen schädigende Substanzen im Blut (wie Gifte, Krankheitserreger, bestimmte Medikamente etc.) abgeschirmt.

Gehirn-Aufbau: Fünf Abschnitte

Das menschliche Gehirn lässt sich grob in fünf Abschnitte gliedern:

Lesen Sie auch: Faszination Nesseltiere: Wie sie ohne Gehirn leben

  • Großhirn (Telencephalon)
  • Zwischenhirn (Diencephalon)
  • Mittelhirn (Mesencephalon)
  • Kleinhirn (Cerebellum)
  • Nachhirn (Myelencephalon, Medulla oblongata)

Diese Hirnregionen übernehmen ganz unterschiedliche Funktionen.

Großhirn (Telencephalon)

Das Großhirn ist der größte und schwerste Teil des Gehirns und ähnelt mit seinen Falten und Furchen einem Walnusskern. Es verarbeitet und bewertet alle Reize, die unsere Sinnesorgane empfangen. Die beiden nahezu symmetrischen Großhirnhälften umschließen den Hirnstamm.

Die Großhirnrinde ist der am höchsten entwickelte Bereich des Gehirns und macht etwa 80 Prozent der gesamten Hirnmasse aus. Anatomen unterteilen die Großhirnrinde (Kortex) anhand ihrer vielen Furchen und Falten in verschiedene Lappen. Der Stirnlappen ist das Zentrum der geistigen Fähigkeiten. In seinem vordersten Bereich liegt der präfrontale Kortex. Hier befindet sich das Kurzzeitgedächtnis, heute meist Arbeitsgedächtnis genannt. Besondere Fähigkeiten des Menschen wie Lesen, Schreiben, Rechnen und logisches Denken beruhen auf dem Arbeitsgedächtnis. Es ist der Dreh- und Angelpunkt unserer mentalen Fitness.

Neben dem Stirnlappen sind auch die anderen Lappen der Großhirnrinde wesentlich an der Verarbeitung von Gedächtnisinhalten beteiligt. So führt der Schläfenlappen alle Hörinformationen und Seheindrücke zusammen, bewertet diese und speichert das Wichtige. Außerdem befindet sich im Schläfenlappen das Sprachgedächtnis. Der Scheitellappen wiederum kann sich die grundsätzlichen Vorgänge beim Rechnen merken sowie die korrekte Bildung von Wörtern und Sätzen.

Zwischenhirn (Diencephalon)

Das Zwischenhirn besteht unter anderem aus dem Thalamus und dem Hypothalamus. Als Schaltstelle zwischen Großhirn, Kleinhirn und Hirnstamm fungiert das Zwischenhirn. Hier sitzt der Thalamus, die Informationszentrale des Gehirns: Er leitet die Signale der Sinnesnerven an das Großhirn weiter und entscheidet, was ins Bewusstsein dringt. Damit prägt der Thalamus unseren Begriff von der Welt.

Lesen Sie auch: Lesen Sie mehr über die neuesten Fortschritte in der Neurowissenschaft.

Der Hypothalamus reguliert zum Beispiel Hunger, Durst und Schlaf und kontrolliert zusammen mit der Hirnanhangdrüse (Hypophyse) den Hormonhaushalt.

Hirnstamm

Im unteren Schädelbereich befindet sich die Hirnbasis, die - entsprechend der knöchernen Schädelbasis - stärker modelliert ist. Hier liegt der Hirnstamm.

Der Hirnstamm ist der stammesgeschichtlich älteste Teil des Gehirns und besteht aus Mittelhirn, Medulla oblongata und Brücke (Pons). Er schaltet Informationen vom Gehirn zum Kleinhirn und dem Rückenmark um und kontrolliert Bewegungen der Augen sowie die Mimik. Der Hirnstamm ist für die grundlegenden Lebensfunktionen zuständig. Er steuert die Herzfrequenz, den Blutdruck und die Atmung sowie Reflexe wie den Lidschluss-, Schluck- oder Hustenreflex.

Mittelhirn (Mesencephalon)

Das Mesencephalon ist der kleinste Abschnitt des Gehirns.

Medulla oblongata (Myelencephalon)

Das auch als Nachhirn bezeichnete Meyelencephalon stellt den Übergang zwischen Gehirn und Rückenmark dar. Im Nachhirn überkreuzen sich viele Nervenbahnen unserer beiden Körperhälften.

Lesen Sie auch: Tinnitus und Gehirnaktivität: Ein detaillierter Einblick

Kleinhirn (Cerebellum)

Oberhalb des Hirnstamms und unterhalb der beiden Großhirnhemisphären sitzt das Kleinhirn. Ob wir die Kaffeetasse heben oder auf der Slackline balancieren - unser Kleinhirn koordiniert alle Bewegungen des Körpers. Außerdem hält uns das Cerebellum im Gleichgewicht. Nach neueren Erkenntnissen steuert das Kleinhirn aber nicht nur die Motorik. Es ist darüber hinaus für Aufmerksamkeit, volle Konzentration und ein gutes Gedächtnis wichtig.

Graue und weiße Substanz

Die graue Substanz im Gehirn besteht in erster Linie aus Nervenzellkörpern. Der Name kommt daher, dass die Nervenzellen im lebenden Organismus rosa sind, sich nach dessen Tod aber grau verfärben. Aus grauer Substanz bestehen etwa die Großhirnrinde, die Basalganglien, die Kleinhirnrinde und die Hirnnervenkerne. Etwa 80 Prozent der Hirndurchblutung sind für die Versorgung der grauen Substanz notwendig.

Neben der grauen Substanz gibt es noch die weiße Substanz, die aus den Nervenzellfortsätzen, den Nervenfasern (Axonen), besteht. Die weiße Substanz findet sich im Mark von Großhirn und Kleinhirn.

Blutversorgung des Gehirns

Dem Gehirn entspringen zwölf paarige Nerven, die den Kopf, den Hals und Organe im Rumpf versorgen. Diese Menge kann bis zum 50. Lebensjahr geringfügig schwanken, nimmt aber danach ab (zusammen mit dem Sauerstoff- und Glukoseverbrauch). Zwischen 15 und 20 Prozent des Herzminutenvolumens entfällt auf die Blutversorgung des Gehirns.

In Schlaf- und Wachphasen wird das Gehirn stets etwa gleichermaßen durchblutet. Auch bei Blutdrucksteigerungen, Blutdruckabfall, starker körperlicher Anstrengung oder sogar unregelmäßigem Herzschlag ändert sich die Durchblutung des Gehirns kaum - außer, wenn der systolische Blutdruck stark abfällt (unter 70 mmHg) oder stark ansteigt (über 180 mmHg).

Die Blutversorgung des Gehirns erfolgt über die rechte und linke innere Halsschlagader (Arteria carotis interna), die aus der gemeinsamen Halsschlagader (Arteria communis) entspringen, und über die Arteria vertebralis, die aus den Wirbelkörpern kommt und durch das Hinterhauptsloch in die Schädelhöhle eintritt. Durch weitere Arterien werden diese zu einem Gefäßring (Circulus arteriosus cerebri) geschlossen, der die Basis des Zwischenhirns umfasst.

Durch diesen Gefäßring wird sichergestellt, dass der Blutbedarf des empfindlichen Gehirns auch bei Schwankungen in der Blutzufuhr immer ausreichend ist. Der Gefäßring und seine Äste liegen zwischen zwei Hirnhäuten (der Spinngewebshaut und der inneren Hirnhaut) im sogenannten Subarachnoidalraum und sind dort von Liquor (Hirn-Rückenmarksflüssigkeit) umgeben, der die dünnwandigen Gefäße schützt.

Energieverbrauch und Gehirnkapazität

Der Energieverbrauch im Gehirn ist enorm hoch. Fast ein Viertel des Gesamtenergiebedarfs des Körpers entfällt auf das Gehirn. Die Glukosemenge, die täglich mit der Nahrung aufgenommen wird, wird bis zu zwei Drittel vom Gehirn beansprucht.

Die Gehirnkapazität ist deutlich größer als die, die wir im Alltag tatsächlich nutzen. Das bedeutet: Ein Großteil unserer Gehirnkapazität ist ungenutzt.

Entwicklung des Gehirns

Die embryonale Entwicklung des Gehirns aus dem Neuralrohr zeichnet sich einerseits durch ein besonderes Größenwachstum aus, andererseits durch ein ungleichmäßiges Dickenwachstum der Wand und besondere Knickstellen. Dadurch wird das Gehirn schon frühzeitig in mehrere Abschnitte unterteilt.

Aus der Hirnanlage bilden sich zunächst drei hintereinander liegende Abschnitte (primäre Hirnbläschen) heraus, die dann das Vorderhirn, das Mittelhirn und das Rautenhirn bilden. In der weiteren Entwicklung entstehen daraus fünf weitere, sekundäre Hirnbläschen: Aus dem Vorderhirn entwickeln sich Großhirn und Zwischenhirn. Aus dem Rautenhirn gehen die Medulla oblongata, die Brücke und das Kleinhirn hervor.

Wie funktioniert das Gehirn?

Ein reibungsloses Funktionieren aller Organe und Gewebe im Körper sowie ein sinnvolles Verhalten sind nur möglich, wenn alle Organfunktionen von einer übergeordneten Kontrollinstanz koordiniert und kontrolliert werden und alle Informationen, die uns die Umwelt liefert, aufgenommen, verarbeitet und beantwortet werden. Diese Aufgabe leistet unser Gehirn, das Netzwerk aus Milliarden von Nervenzellen (Neuronen).

Die Gehirnzellen sind durch Synapsen, Kontaktstellen zwischen den Zellen, miteinander verbunden. Diese Kontaktstellen spielen eine wichtige Rolle bei der Verarbeitung der Nachrichten. Informationen aus dem Körper oder der Umwelt gelangen etwa in Form von Hormonen über das Blut oder als elektrische Impulse aus den Sinneszellen über Nervenbahnen bis ins Gehirn. Dort werden sie bewertet und verarbeitet. Als Reaktion werden entsprechende Signale vom Gehirn wieder ausgesendet - zum Beispiel an Muskeln, um sich zu bewegen, an Drüsen, um Sekrete zu produzieren und abzugeben, oder an Sinnesorgane, um Reize aus der Umwelt zu beantworten.

Das menschliche Gehirn ist das komplizierteste Organ, das die Natur je hervorgebracht hat: 100 Milliarden Nervenzellen und ein Vielfaches davon an Kontaktpunkten verleihen ihm Fähigkeiten, an die kein Supercomputer bis heute heranreicht. Eine der wichtigsten Eigenschaften ist seine Lernfähigkeit. Doch wie kann eine Ansammlung von Nervenzellen überhaupt etwas lernen? Bis vor wenigen Jahren galt unter Wissenschaftlern als ausgemacht: Das Gehirn eines Erwachsenen verändert sich nicht mehr. Heute weiß man jedoch, dass das Gehirn bis ins hohe Alter laufend umgebaut wird. Manche Neurobiologen vergleichen es sogar mit einem Muskel, der trainiert werden kann.

Synaptische Plastizität

Lernen findet an den Synapsen statt - also den Orten, an denen die elektrischen Signale von einer Nervenzelle zur nächsten übertragen werden. Neurowissenschaftler haben herausgefunden, dass Synapsen die Effektivität der Übertragung variieren können. Man bezeichnet dieses Phänomen auch als synaptische Plastizität. So kann eine Synapse durch einen Vorgang namens Langzeitpotenzierung (LTP) verstärkt werden, indem sie mehr Botenstoff ausschüttet oder mehr Botenstoffrezeptoren bildet.

Die Übertragung von Signalen kann aber nicht nur verstärkt oder abgeschwächt werden, sie kann auch überhaupt erst ermöglicht oder völlig gekappt werden. So wissen Neurowissenschaftler heute, dass Synapsen selbst im erwachsenen Gehirn noch komplett neu gebildet oder abgebaut werden können. An wenigen Stellen wie zum Beispiel im Riechsystem können sogar zeitlebens neue Nervenzellen gebildet werden. Es ist also nicht übertrieben, wenn man sagt: Unser Gehirn gleicht zeitlebens einer Baustelle.

Stärkung und Schwächung, Auf- und Abbau - die Stärke, mit der Signale zwischen Nervenzellen übertragen werden, wird laufend angepasst. Etwas vereinfacht könnte man sich also vorstellen, dass die Signalübertragung verstärkt wird, wenn das Gehirn etwas speichert - und abgeschwächt wird, wenn es vergisst. Ohne die Plastizität würde dem Gehirn folglich etwas Fundamentales fehlen: seine Lernfähigkeit.

Mit dem Lernen verhält es sich wie mit dem Sport: Je mehr eine bestimmte Fähigkeit gefordert wird, desto effektiver wird sie erledigt. Wer beispielsweise Taxi fährt, muss sich gut orientieren und Routen merken können. Durch die tägliche Arbeit wird so das Ortsgedächtnis immer besser. Das hinterlässt auch Spuren im Gehirn, zum Beispiel im Gehirn Londoner Taxifahrer: Forscher haben herausgefunden, dass in ihrem Gehirn der Hippocampus - ein für das Ortsgedächtnis zentrale Region im Gehirn - über die Jahre größer wird. Offenbar braucht ein derart trainiertes Orientierungsvermögen auch mehr Raum!

Seine Plastizität hilft dem Gehirn zudem, Schäden zumindest teilweise zu reparieren. Sterben beispielsweise bei einem Schlaganfall Nervenzellen ab, können benachbarte Hirnregionen die Aufgaben des betroffenen Gebiets zum Teil übernehmen. Am Max-Planck-Institut für Kognitions- und Neurowissenschaften haben Forscher herausgefunden, dass das Gehirn so die Schäden nach einem Schlaganfall zum Teil kompensieren kann.

Reizweiterleitung über elektrische Impulse

Wie funktioniert die Reizweiterleitung über elektrische Impulse? Das wird am Beispiel unserer Haut deutlich: Temperatur, Berührungen und Druck werden über die Rezeptoren der Haut aufgenommen und in elektrische Impulse umgewandelt. Die sensorischen und motorischen Nervenbahnen sind Teil des peripheren Nervensystems. Die sensorischen - oder auch afferenten (= "hinführenden") - Nervenbahnen leiten die Impulse vom Sinnesorgan zum Gehirn. Die motorischen - oder auch efferenten (="hinaustragenden") - Nervenbahnen leiten die Impulse von Gehirn zum ausführenden Organ.

Die Nervenbahnen bestehen aus einzelnen Nervenzellen - davon besitzt der Mensch rund einhundert Milliarden. Eine Nervenzelle - auch Neuron genannt - ist in der Regel eine lang gestreckte Zelle. Sie gliedert sich in drei Abschnitte: Zellkörper, Dendriten und Axon. Der Zellkörper beinhaltet den Zellkern und verzweigt sich in viele Fortsätze, die sogenannten Dendriten. An ihrer Oberfläche werden Signale von anderen Nervenzellen aufgenommen. Ein Fortsatz des Zellkörpers ist besonders lang und groß: das Axon. Es hat die Aufgabe, die von den Dendriten aufgenommenen Reize in der Nervenzelle weiterzuleiten. Das Axon verzweigt sich an seinem Ende baumartig, die Verzweigungen enden in Endknöpfchen. Sie liegen nahe an den Dendriten der nächsten Nervenzelle.

Zwischen den Endknöpfchen der einen Nervenzelle und den Dendriten der nächsten Nervenzelle liegt der sogenannte synaptische Spalt. Er ist 0,000016 bis 0,00003 mm breit und muss zur Übertragung der Reize überbrückt werden. Hier wird der elektrische Impuls in ein chemisches Signal umgewandelt. Die Überbrückung des synaptischen Spalts übernehmen also Überträgersubstanzen: Botenstoffe, die Neurotransmitter genannt werden. Es gibt mindestens 50 verschiedene Botenstoffe, die der Erregungsleitung zwischen den Neuronen dienen. Zu den bekannten Neurotransmittern gehören zum Beispiel Noradrenalin, Acetylcholin, Dopamin und Serotonin.

Der Überträgerstoff entscheidet darüber, ob die nachgeschaltete Nervenzelle, eine Drüse oder ein Muskel aktiviert oder gehemmt wird. Acetylcholin ist ein Neurotransmitter, der aktivierend auf die Skelettmuskulatur wirkt, Noradrenalin ein Transmitter, der je nach Zelle, an die er abgegeben wird, fördert oder hemmt. Noradrenalin wird überwiegend im Sympathikus ausgeschüttet und aktiviert die Herzmuskelzellen, während es die Muskelzellen des Darms hemmt.

Das Limbische System

Das limbische System kann auf eine wandlungsvolle neurowissenschaftliche Geschichte zurückblicken. Lange galt es als unitäres Zentrum unserer Emotionen, und zahlreiche populärwissenschaftliche Texte transportieren nach wie vor diese vereinfachte Botschaft. Tatsächlich aber gehen die Funktionen des limbischen Systems weit darüber hinaus, denn neben der Steuerung von Emotionen beeinflusst es zum Beispiel auch Gedächtnis oder Antrieb.

Der Begriff „limbisches System“ ist sehr unscharf und bezeichnet eine Gruppe von Strukturen, die mit der Verarbeitung von Emotionen und mit Gedächtnisprozessen befasst sind. Welche dies sind, darüber gibt es unterschiedliche Vorstellungen. Die älteste Definition stammt von dem französischen Arzt Paul Broca (1824 - 1880). Er postulierte 1878, es gebe in der Großhirnrinde ein Areal, das sich vom restlichen Cortex grundlegend unterscheide - und von dem Broca fälschlicherweise annahm, es sei ausschließlich für das Riechen zuständig. Weil sich dieses Areal ringförmig um den Thalamus und Anteile der Basalganglien legt, wählte er den lateinischen Begriff „limbus“, was so viel bedeutet wie „Saum“ oder „Rand“.

1949 formulierte der US-amerikanische Mediziner und Hirnforscher Paul McLean die Theorie, das limbische System sei das Zentrum unserer Emotionen und stelle damit - ungefähr wie eine biologische Matrjoschka-Puppe - ein emotionales Gehirn im Gehirn dar. McLean ging davon aus, dass zusätzlich zu den von Broca bestimmten Arealen auch die Amygdala und das Septum am limbischen System beteiligt seien. Heutzutage zählen die meisten Wissenschaftler zum limbischen System den Hippocampus, den Gyrus cinguli, den Gyrus parahippocampalis, die Amygdala und das Corpus mammillare. Auch wird die Erweiterung des limbischen Systems um das Riechhirn - inklusive Septum - und Teile des Thalamus diskutiert. Spätestens hier wird klar: Das limbische System definiert sich nicht topographisch über die lokale Nähe der Strukturen, sondern über ihre funktionalen Verbindungen.

Zahlreiche Studien legen nahe, dass das limbische System unser affektives Verhalten zumindest teilweise kontrolliert und damit Gefühle und Sexualität beeinflusst. Zudem spielt es eine zentrale Rolle bei der Abspeicherung von Gedächtnisinhalten und ist so an Lernprozessen beteiligt.

Der Papez-Kreis läuft vom Hippcampus über den Fornix zu den Corpora mamillaria und weiter über den Thalamus zum Gyrus cinguli, der seinerseits wieder zurück zum Hippocampus projiziert. Damit schließt sich ein Kreis, der essentiell für das Gedächtnis ist: Wird er durch Operationen oder Läsionen unterbrochen, verlieren die Patienten die Fähigkeit zum Abspeichern von neuen Gedächtnisinhalten. Zwar erinnern sie ihre Vergangenheit - je älter die Erinnerung, umso besser -, doch der Weg vom Kurzzeit- ins Langzeitgedächtnis ist zerstört.

Das limbische System besteht aus einer eng vernetzten Gruppe von Hirnarealen, die in verschiedene Bereiche des Großhirns, aber auch des Hirnstamms aussenden. Wichtige Bestandteile sind Hippocampus, Gyrus cinguli, Gyrus parahippocampalis, Amygdala und Corpus mamillare.

Störungen und Krankheiten des Gehirns

Das menschliche Gehirn ist ein empfindliches Organ, das anfällig für verschiedene Störungen und Krankheiten sein kann. Einige der häufigsten Störungen des Gehirns sind:

  • Schlaganfall: Ein Schlaganfall tritt auf, wenn die Blutversorgung des Gehirns unterbrochen wird, was zu Schäden an den Gehirnzellen führen kann. Schlaganfälle können zu Lähmungen, Sprachproblemen und Gedächtnisverlust führen.
  • Epilepsie: Epilepsie ist eine Störung des Gehirns, die zu wiederholten Anfällen führen kann. Während eines Anfalls können Betroffene Krämpfe, Bewusstseinsverlust und andere Symptome erleiden.
  • Demenz: Demenz ist eine Erkrankung, die das Gedächtnis und die kognitiven Fähigkeiten beeinträchtigt. Die Alzheimer-Krankheit ist eine häufige Form der Demenz.
  • Parkinson: Bei Parkinson kommt es zum Absterben einer bestimmten Art von Nervenzellen im Gehirn. Dadurch herrscht eine geringere Konzentration des Botenstoffs Dopamin vor.
  • Gehirntumor: Es gibt gutartige und bösartige Hirntumore.

tags: #gehirn #für #einsteiger #aufbau #funktion