Neuron Definition: Einfach erklärt

Was passiert eigentlich in deinem Gehirn, wenn du eine neue Idee hast oder blitzschnell auf eine heiße Herdplatte reagierst? Hinter jeder Bewegung, jedem Gedanken und Gefühl stecken Milliarden winziger Baumeister: die Neuronen. In diesem Artikel führen wir dich auf eine Entdeckungsreise ins Herz unserer Nervenzellen - ihren komplexen Aufbau und die faszinierenden Mechanismen, mit denen sie unser Leben steuern.

Was ist ein Neuron?

Beginnen wir mit einer Frage, die dich vielleicht schon im ersten Semester der Biologie verfolgt: Was genau ist ein Neuron? Das Neuron - oft auch Nervenzelle genannt - ist die grundlegende, spezialisierte Bau- und Funktionseinheit unseres Nervensystems. Es ist darauf ausgelegt, Informationen im Körper zu empfangen, weiterzuleiten und zu verarbeiten. Ohne Neuronen gäbe es keine bewusste Wahrnehmung, kein Gedächtnis und keine Muskulatur, die auf Befehle reagiert. Damit ist klar: Verstehst du Neuronen und wie sie arbeiten, gewinnst du nicht nur Einblicke in dein eigenes Denken und Handeln, sondern auch in moderne Medizin und Technik.

Der Aufbau einer Nervenzelle

Wer ein Neuron betrachtet, entdeckt schnell: Diese Zellen sind wahre Spezialisten mit klar gegliedertem Aufbau. Nimm eine berühmte bildhafte Analogie: Stell dir einen Baum vor - sein Stamm ist der Zellkörper, die Wurzeln und Äste stehen für Dendriten, und der lange, schlanke Ast repräsentiert das Axon. Ein Neuron, auch Nervenzelle genannt, besteht aus mehreren charakteristischen Abschnitten: Den Anfang machen die Dendriten - das sind baumartige Ausläufer, die Signale von anderen Zellen empfangen. Diese leiten die Informationen weiter an das Soma, den Zellkörper. Im Soma befinden sich wichtige Zellorganelle wie Zellkern und Mitochondrien. Vom Soma geht der Axonhügel aus. Hier werden alle eintreffenden elektrischen Signale gesammelt und „entschieden“, ob sie als Aktionspotenzial weitergeleitet werden. Das Axon ist dann wie ein langer Kabelstrang, der die elektrische Erregung bis zum synaptischen Endknöpfchen weiterleitet. Wichtig: Viele Axone sind von einer Myelinscheide umhüllt - das sorgt für eine schnellere Signalübertragung. Zu einem Neuron gehören die Dendriten (Empfang von Signalen), das Soma (Zellkörper), der Axonhügel (Schaltstelle für Signalweiterleitung), das Axon (Signaltransport), die Myelinscheide (elektrische Isolierung und Beschleunigung) und die synaptischen Endknöpfchen (Signalübertragung an andere Zellen). Zusammengenommen bilden diese Bausteine die perfekte Leitung für Informationen im Nervensystem.

Soma (Zellkörper)

Im Zellkörper, auch Soma genannt, befindet sich der Zellkern (Nukleus) mit den genetischen Informationen. Hier laufen lebenswichtige Vorgänge wie Proteinsynthese und Stoffwechsel ab - das Gehirn des Neurons, wenn du so willst. Der Zellkörper der Nervenzelle, auch Soma genannt, enthält den Zellkern sowie alle Zellorganellen, die für die Funktionsfähigkeit der Zelle wichtig sind, darunter Nissl-Schollen, Golgi-Apparat und Mitochondrien. Von letzteren ist das Neuron aufgrund seines hohen Energiebedarfs in besonderem Maße abhängig.

Dendriten

Dendriten sind feine, oft stark verzweigte Fortsätze, die vom Soma abzweigen. Ihre Hauptaufgabe: Informationen aus der Umgebung aufnehmen - wie Mikrofone, die jedes Flüstern aus der Nachbarschaft erfassen. Dendriten sind feine Verästelungen des Zellkörpers (sog. Zellfortsätze), die über Synapsen mit anderen Nervenzellen in Kontakt stehen. Sie empfangen deren Signale und leiten sie anschließend an den Zellkörper weiter. Dendriten stellen also gewissermaßen die Antennenregion der Nervenzelle dar. Die Dendriten sind die verästelten Ausläufer des Somas und Kontaktstelle zu Zellen oder anderen Neuronen. Bei Ihnen kommt ein Reiz zuerst an. Ihnen kommt dann die Aufgabe zu, diese Erregungen an das Soma weiterzuleiten.

Lesen Sie auch: Ursachen, Symptome und Behandlungen von Motoneuron-Erkrankungen

Axon

Das Axon ist oft der längste Teil der Nervenzelle. Über dieses "Nervenfaserkabel" werden elektrische Signale vom Zellkörper fortgeleitet - manchmal über Entfernungen von mehr als einem Meter! Ein Axon kann sich dabei zu mehreren Endverzweigungen aufsplitteten, an deren Spitzen die Synapsen sitzen. Als Axon bzw. Neurit wird der Neuron Fortsatz bezeichnet, der aus dem Axonhügel hervorgeht und die elektrischen Impulse vom Zellkörper zum Ende der Nervenzelle leitet. Im Gegensatz zu den kürzeren Dendriten kann die Länge des Axons je nach Funktion und Lokalisation der Nervenzelle bis zu einem Meter und mehr betragen. Das Axon ist der Bereich der Nervenzelle, der die Erregungen weitergibt. Dieses kann in unterschiedlichen Längen vorliegen, beim menschlichen Körper ist es teilweise bis zu einem Meter lang. Die Erregungen werden an den unisolierten Stellen, also den Ranvierschen Schnürringen, sprunghaft weitergegeben (saltatorische Erregungsleitung) bis zum Endköpfchen (der Synapse). Da die Reizweitergabe nur an den unisolierten Stellen erfolgen muss, ergibt sich eine hohe Geschwindigkeit.

Axonhügel

Am Übergang vom Soma ins Axon sitzt der Axonhügel. Der Axonhügel bildet den Ursprung des Axons am Zellkörper der Nervenzelle. Hier werden die einkommenden elektrischen Impulse gesammelt und verrechnet, bis sie eine bestimmte Schwelle überschreiten. Haben sie das sogenannte Schwellenpotenzial erreicht, wird der Reiz (Aktionspotenzial) über das Axon zur nächsten Zelle weitergeschickt. Die Dendriten und das Soma werden an einer Stelle gebündelt und dort wird der Übergang zum Axon gebildet. An diesem sogenannten Axonhügel werden die Erregungen, die die Dendriten aufgenommen haben, gesammelt und an das Axon weitergeleitet. Dies geschieht jedoch nur dann, wenn die Reize gemeinsam ein bestimmtes elektrisches Potenzial überschreiten. Wenn jeder einzelne Reiz, der unseren Körper trifft, weitergeleitet und verarbeitet werden müsste, wäre das für den Organismus nicht machbar und wir wären nicht lebensfähig. Man spricht von einem Schwellenpotenzial, das erreicht erden muss, damit ein Reiz weitergeleitet wird.

Myelinscheide

Viele Axone werden von einer fettreichen Schicht, der Myelinscheide, umhüllt. Sie funktioniert wie die Isolierung bei einem Stromkabel und steigert die Geschwindigkeit der Signalweiterleitung enorm: Signale "springen" von einem Ranvierschen Schnürring zum nächsten - das nennt man saltatorische Erregungsleitung. Axone ohne Myelinscheide leiten langsamer und finden sich v.a. Schwannsche Zellen sind Stütz- und Hüllzellen der Neuronen im peripheren Nervensystem. Sie sind nicht direkt an der Reizweiterleitung beteiligt, sondern haben die Aufgabe, die Nervenzelle zu stabilisieren und zu ernähren. Als Myelinscheide oder Markscheide wird die von Schwannschen Zellen gebildete elektrische Isolationsschicht bezeichnet. Wie ein Verband legt sie sich um das Axon der Neuronen des peripheren Nervensystems herum und sorgt so nicht nur für deren Schutz, sondern auch für die Beschleunigung der Erregungsleitung. Im zentralen Nervensystem (ZNS), also dem Gehirn und Rückenmark, werden die Nervenzellen ebenfalls von einer Myelinscheide umgeben. Entlang des Axons ist die Myelinscheide immer wieder durch freiliegende Axonbereiche, die sogenannten Ranvierschen Schnürringe, unterbrochen. Diese Unterbrechungen ermöglichen es dem elektrischen Impuls, über längere umhüllte Bereiche zu springen und so eine höhere Geschwindigkeit zu erlangen.

Synapsen

Am Ende des Axons stehen die Synapsen. Synaptische Endknöpfchen bilden das Ende der Nervenzelle, an dem mithilfe von Synapsen ankommende elektrische Signale zur nächsten Nervenzelle oder einer anderen Zelle (z. B. Meist wird das elektrische Potenzial dazu in sogenannten Neurotransmitter (Nervenbotenstoffe) „umgewandelt“. Die synaptischen Endknöpfchen bilden das Ende eines Neurons. Das elektrische Signal wird hier auf die nächste Nervenzelle oder zum Beispiel auf eine Sinnes- oder Muskelzelle übertragen. Dazu wird das elektrische Signal meist in ein chemisches Signal umgewandelt. Die Verbindung am Ende einer Nervenzelle mit einer anderen Zelle nennst du Synapse. In den meisten Fällen sind das chemische Synapsen. Das Endknöpfchen setzt chemische Moleküle in den synaptischen Spalt - die Lücke zwischen den zwei Zellen - frei. Dort binden sie an Rezeptoren und geben die Erregung weiter.

Die Funktion eines Neurons

Die Aufgabe eines Neurons ist es, Informationen im Körper zu empfangen, zu verarbeiten und weiterzuleiten. Neuronen funktionieren dabei wie biologische Kabel: Sie nehmen Reize (zum Beispiel Berührung, Licht, Geräusche) auf und wandeln sie in elektrische Signale um. Diese Signale werden über das Axon zur nächsten Zelle oder ins Gehirn transportiert. Durch diese Kommunikation steuern Neuronen unzählige Prozesse - von simplen Reflexen bis zu komplexem Denken, Erinnern und Lernen. Zahlreiche Antennen und ein leistungsstarkes Datenkabel machen es möglich, dass Nervenzellen in Windeseile untereinander und mit anderen Körperzellen kommunizieren. Wichtige Schaltstellen bilden hierbei die Synapsen, deren Anzahl je nach Zelltyp zwischen genau einer und über 100.000 variieren.

Lesen Sie auch: Fliegen und Drohnen im Fokus

Reizaufnahme und Signalverarbeitung

An ihren Dendriten empfangen Neuronen Signale von anderen Zellen oder Sinnesrezeptoren. Im Soma werden diese Impulse verrechnet - du kannst dir das vorstellen wie ein „kleines Wahlstudio“: Erreichen die eingehenden Reize einen gewissen Schwellenwert, wird das Signal weitergeleitet. Die Signalübertragung im Neuron beginnt mit der Aufnahme eines Reizes durch die Dendriten. Dieser Reiz erzeugt kleine elektrische Änderungen an der Zellmembran. Überschreitet die Summe dieser Änderungen am Axonhügel einen Schwellenwert, entsteht ein Aktionspotenzial - eine Art elektrischer Impuls.

Aktionspotenzial

Kommt es zur Signalübertragung, öffnet sich am Axonhügel eine Kaskade von Ionenkanälen. Natrium-Ionen strömen blitzartig in die Zelle (Depolarisation), das Membranpotenzial kippt, ein Aktionspotenzial entsteht. Das Aktionspotenzial ist ein kurzer, elektrischer Impuls, der von der Nervenzelle erzeugt wird, wenn ein Reiz stark genug ist. Man kann es sich als eine Art 'Stromwelle' vorstellen, die das Axon entlangläuft. Das Aktionspotenzial sorgt dafür, dass Informationen auch über weite Strecken sehr schnell und zuverlässig innerhalb des Nervensystems übermittelt werden.

Reizweiterleitung

Das Aktionspotenzial läuft das Axon entlang bis zu den Synapsen. Dort sorgt ein weiterer ionengetriebener Prozess dafür, dass Neurotransmitter freigesetzt werden. An der Synapse angekommen, wird das elektrische Signal meist in ein chemisches Signal, einen sogenannten Neurotransmitter, umgewandelt. Dieser überquert den synaptischen Spalt und löst in der nächsten Zelle ein neues elektrisches Signal aus.

Ein anschauliches Beispiel

Wenn du deine Hand von einer heißen Herdplatte abziehst, läuft dieses System wie am Schnürchen: Sinneszellen nehmen die Hitze wahr, Neuronen leiten das Signal superschnell an dein Rückenmark (Reflexbogen!) und weiter an die Arm-Muskulatur. Nehmen wir an, jemand tippt dir von hinten auf die Schulter. Die Dendriten der Nervenzelle leiten den Reiz zum Zellkörper weiter. Die Erregung durch das Antippen ist stark genug, dass am Axonhügel ein Aktionspotential entsteht. An der chemischen Synapse wird das elektrische Signal in ein chemisches Signal umgewandelt. Dazu setzen die synaptischen Endknöpfchen chemische Moleküle (Neurotransmitter) in den synaptischen Spalt frei. Die Moleküle binden an Rezeptoren auf der anderen Seite des Spalts. Das führt zur Entstehung eines elektrischen Signals in der nächsten Zelle. Das Signal wird so über Nervenzellen bis in dein Gehirn geleitet. Dort wird es verarbeitet und das Gehirn erhält das Signal „Du wurdest berührt“.

Verschiedene Arten von Neuronen

Nicht alle Neuronen sehen gleich aus oder übernehmen dieselben Aufgaben. Die Evolution hat eine beeindruckende Palette an Nervenzelltypen hervorgebracht - spezialisiert auf die unterschiedlichsten Funktionen. Neuronen lassen sich grob nach ihrer Funktion in drei Haupttypen unterteilen: Sensorische Neuronen nehmen Reize aus der Umwelt oder dem Körperinneren auf und leiten sie an das Gehirn weiter. Motorische Neuronen leiten Befehle vom Gehirn oder Rückenmark an Muskeln oder Drüsen. Interneuronen vernetzen verschiedene Neuronen untereinander - sie sind das „Schaltzentrum“ im zentralen Nervensystem und machen komplexe Reaktionen und Denkprozesse erst möglich. In der Neurobiologie können Nervenzellen nach verschiedenen Charakteristika eingeteilt werden.

Lesen Sie auch: Die Rolle des Zellkörpers in Neuronen

Bipolare Neuronen

Hier finden sich zwei Fortsätze; sie übernehmen z.B. Neuron mit zwei separaten Fortsätzen (Axon und Dendrit); dient der Vermittlung bestimmter Sinne (z. B.

Apolare und anaxonische Neuronen

Finden sich v. a.

Sensorische (afferente) Neuronen

Sie leiten Sinnesreize von Haut, Organen oder Sinnesorganen zum Gehirn und Rückenmark.

Unipolare Nervenzelle

Neuron mit einem Fortsatz (Axon); lange wurden die Sinneszellen der Augen dazu gezählt.

Pseudounipolare Nervenzelle

Neuron, bei dem Dendrit und Axon aus einem gemeinsamen Fortsatz in der Nähe des Zellkörpers entspringen (z. B.

Multipolare Nervenzelle

Neuron mit vielen Dendriten und einem Axon; multipolare Nervenzellen gehören zu den am häufigsten vorkommenden Nervenzellen (z. B.

Synapsen: Die Schaltstellen im Nervensystem

Gefühlt bist du ununterbrochen online - dank Synapsen sind Neuronen das auch. Sie sind die Schaltstellen, an denen Informationen von einer Nervenzelle zur nächsten weitergegeben werden. Nervenzellen sind miteinander durch Synapsen verbunden, an denen Signale in Form von Botenstoffen übertragen werden. Die Nervenzellen besitzen eine Antennenregion, die durch den Zellkörper und deren Fortsätze (Dendriten) gebildet wird. Die Signale werden dann verrechnet und durch ein „Kabel“, das Axon, in Form von elektrischen Impulsen weitergeleitet. In der Senderregion verzweigt sich das Axon und bildet Kontaktstellen aus, die Synapsen, an denen die Signale auf andere Nervenzellen übertragen werden (Abb. 1). Dort werden die aus dem Axon eintreffenden elektrischen Impulse in chemische Signale umgewandelt. Die Information fließt dabei nur in einer Richtung: Eine Zelle redet, die andere hört zu.

Was passiert an der Synapse?

Am Ende des Axons sitzt die präsynaptische Endigung und trifft auf die postsynaptische Membran der nächsten Zelle. Sobald ein Aktionspotenzial die präsynaptische Endigung erreicht, öffnen sich Calciumkanäle - durch den Einstrom von Calciumionen werden gespeicherte Bläschen (Vesikel) mit Neurotransmittern ausgeschüttet. Trifft nun ein elektrisches Signal über das Axon am Nervenende ein, erhöht sich die elektrische Spannung an der präsynaptischen Membran, d. h. In der Folge bewegen sich mit Neurotransmittern gefüllte synaptische Vesikel in Richtung der Membran und verschmelzen mit ihr. Dabei werden die Botenstoffe in den synaptischen Spalt abgegeben und „wandern“ zur Empfängerzelle. Elektrisch geladene Teilchen strömen in die Zelle ein und verändern die Spannung der Empfänger Zelle (postsynaptisches Potenzial). Der entstehende Reiz wird anschließend über die Dendriten und dem Zellkörper zum Axonhügel weitergeleitet, wo bei einem ausreichend starken elektrischen Impuls ein Aktionspotenzial ausgelöst wird. Anschließend schließen sich die Natriumkanäle wieder. Die Spannung sinkt zurück auf das Ruhepotenzial (sogenannte Repolarisation). Nach dem Alles-oder-nichts-Gesetz lässt eine Erregung bei Überschreitung des Schwellenpotenzials immer ein Aktionspotenzial in gleicher Form, Größe und Dauer entstehen. Daher ist nicht die Größe des Aktionspotenzials für die Kommunikation der Nervenzellen entscheidend, sondern die Anzahl der Impulse pro Zeiteinheit (Frequenz). Dabei ist es wichtig, dass nach jeder Depolarisation mithilfe der Natrium-Kalium-Pumpe das Ruhepotenzial wieder hergestellt wird.

Neurotransmitter

Zu den Neurotransmittern gehören eine Reihe chemischer Botenstoffe wie z. B. Acetylcholin, Noradrenalin, Dopamin oder Glutamat.

Neuronale Netzwerke und ihre Bedeutung

Sobald einzelne Neuronen in riesigen Netzen zusammenarbeiten, entfaltet sich das eigentliche Wunder: das Gehirn als adaptive Steuerzentrale. Unser Nervensystem besteht aus etwa 100 Milliarden Nervenzellen, die untereinander vernetzt sind und dadurch zu komplexen Rechenleistungen in der Lage sind.

Neuronale Netzwerke

Neuronen bilden keine Einzelkämpfer, sondern verschalten sich zu hochkomplexen Netzwerken. Jeder Gedanke, jede Erinnerung, jeder Lerneffekt basiert darauf, dass Verbindungen (Synapsen) angepasst, verstärkt oder gelöscht werden.

Plastizität und Lernen

Plastizität beschreibt die Fähigkeit, auf Erfahrungen, Lernen oder Verletzungen flexibel zu reagieren.

Reflexbogen - ein Beispiel für praktische Netzwerke

Ein Reflex (z. B. der Kniesehnenreflex beim Arzt) zeigt, wie direkt ein Signal vom Sinnesrezeptor übers Rückenmark direkt zum Muskel durchgeschaltet wird - ganz ohne bewusste Steuerung.

Was passiert, wenn die Kommunikation im neuronalen Netzwerk gestört ist?

Morbus Alzheimer

Hier sterben bestimmte Nervenzelltypen im Gehirn ab, die Folge sind Gedächtnisprobleme bis hin zum vollständigen Verlust der Selbstständigkeit.

tags: #neuron #deutsch #simple