Einleitung
Synapsen sind essenzielle Verbindungsstellen im Nervensystem, die die Kommunikation zwischen Nervenzellen (Neuronen) oder zwischen Nervenzellen und anderen Zelltypen wie Muskel- oder Drüsenzellen ermöglichen. Sie sind keine starren Verbindungen, sondern hochdynamische Bereiche, die Reize gezielt weiterleiten, filtern, verstärken oder hemmen. Ohne Synapsen gäbe es keine Informationsübertragung im Nervensystem, die für Prozesse wie Lernen, Erinnern und Muskelsteuerung unerlässlich ist.
Was ist eine Synapse?
Eine Synapse ist der Verbindungsbereich zwischen zwei Zellen, meist Nervenzellen. Ihre Funktion ist das Übertragen von chemischen oder elektrischen Signalen von einer Nervenzelle zu ihrer Nachbarzelle. Synapsen sorgen auch für die Reiz-/Erregungsweiterleitung von einem Neuron zum nächsten, wobei eine Umwandlung von elektrischer Informationen in chemische Information erfolgt.
Aufbau einer Synapse
Eine typische Synapse besteht aus drei Hauptbereichen:
- Präsynapse: Sie bildet das Endknöpfchen des sendenden Neurons. Hier werden die Neurotransmitter in kleinen Bläschen (Vesikeln) gespeichert. Von der Präsynapse geht das weitergeleitete Signal aus. Das Endknöpfchen enthält Vesikel (Bläschen) mit Neurotransmitter (z.B. Acetylcholin).
- Synaptischer Spalt: Der winzige Zwischenraum (etwa 20-50 Nanometer breit) trennt das Endknöpfchen von der nächsten Zelle. Im synaptischen Spalt werden bei chemischen Synapsen die Neurotransmitter aus der Präsynapse ausgeschüttet. Sie diffundieren zu den Rezeptoren der Postsynapse und übermitteln so das Signal.
- Postsynapse: Die postsynaptische Membran gehört zur empfangenden Zelle. Die Postsynapse ist die Nachbarzelle, die das Signal empfängt. An der postsynaptischen Membran werden die freigesetzten Neurotransmitter an Rezeptoren gebunden.
Neben diesen Hauptbestandteilen existiert noch eine Vielzahl regulierender Proteine, Enzyme und Transportmechanismen, die für Präzision und Selektivität in der Signalübertragung sorgen.
Arten von Synapsen
Synapse ist nicht gleich Synapse: Unterschiedliche Anforderungen im Nervensystem haben zur Ausbildung verschiedener Synapsentypen geführt. Man unterscheidet hauptsächlich chemische und elektrische Synapsen. Je nach Funktionalität unterscheidet man im Allgemeinen zwei Typen von Synapsen:
Lesen Sie auch: Schnell fortschreitende Alzheimer: Auslöser
Chemische Synapsen
Bei der chemischen Synapse erfolgt die Signalübertragung indirekt mittels Neurotransmittern. Sie ist im menschlichen Nervensystem am häufigsten und ermöglicht komplexe Regulation, Verstärkung und Hemmung. Chemische Synapsen arbeiten mit Neurotransmittern und sind die Mehrheit im menschlichen Gehirn. Sie sind oft nur in eine Richtung leitend (unidirektional).
Elektrische Synapsen
Diese seltenere Form findet man z.B. im Herzmuskel oder bei gewissen Reflexbahnen. Hier übertragen spezielle Kanäle (Gap Junctions) elektrisch geladene Teilchen (Ionen) direkt von Zelle zu Zelle. Der Signalfluss ist dabei extrem schnell, aber weniger regulierbar als bei der chemischen Synapse. Elektrische Synapsen bestehen aus Gap Junctions, bei denen Ionen direkt von einer Zelle zur anderen fließen können. Sie sind sehr schnell und ermöglichen auch eine bidirektionale Signalübertragung. In elektrischen Synapsen wird das Aktionspotential direkt und ohne Umwege auf die nachfolgende Zelle weitergeleitet. Sie haben direkte Verbindungskanäle, so genannte Gap junctions, über welche die Intrazellulärräume unmittelbar aneinander grenzender Zellen miteinander gekoppelt sind. Gap junctions sind Poren in der Zellmembran, die durch bestimmte Proteine, die Connexine gebildet werden. Durch elektrische Synapsen erfolgt eine direkte Ausbreitung von Änderungen des Membranpotentials über einen relativ geringen ohmschen Widerstand, aber auch die Diffusion von Molekülen, wie z.B. sekundärer Botenstoffe.
Die Elektrische Synapse spielt im Schulunterricht meist keine Rolle!
Nach Art des Neurotransmitters
Auch nach dem Botenstoff lassen sich verschiedene Arten von Synapsen unterscheiden. Jeder Neurotransmitter definiert ein System - eine spezifische Maschinerie, die für Synthese, Ausschüttung, Wirkung, Wiederaufnahme und Abbau des Transmitters zuständig ist, etwa das dopaminerge System oder das cholinerge System.
Funktion der chemischen Synapse
Damit das Aktionspotential an der chemischen Synapse übertragen werden kann, sind einige Abläufe nötig. Bei einer chemischen Synapse erzeugt ein elektrisches Signal (Aktionspotential) in der Präsynapse die Freisetzung von Neurotransmittern. Diese Moleküle überqueren den synaptischen Spalt und aktivieren Rezeptoren an der Postsynapse. Das ausgelöste Signal kann die nächste Nervenzelle entweder aktivieren (erregende Synapse) oder hemmen (hemmende Synapse). Dieser Prozess entscheidet, wie Informationen im Gehirn verarbeitet und weitergeleitet werden.
Lesen Sie auch: Lebenserwartung bei schnell fortschreitender Demenz
Schritt-für-Schritt-Erklärung
- Aktionspotential erreicht die Terminale: Sobald ein Aktionspotential die Terminale erreicht, öffnen sich die spannungsabhängigen Ca2+ Ionenkanäle. Das Signal (Aktionspotential) erreicht das Ende der Axonmembran -> Spannungsänderung!
- Calcium-Einstrom: Es folgt ein starker Einstrom der Ionen in das Endknöpfchen. Spannungsabhängige Ca2+-Kanäle öffnen sich. Ca2+-Ionen strömen in das Endknöpfchen -> Positivierung -> Depolarisation der Membran!
- Vesikelwanderung und -Verschmelzung: Angeregt durch die Ca2+ Ionen Konzentration, wandern die synaptischen Vesikel zur präsynaptischen Membran. Die Ca2+ Ionen werden derweil wieder aus der Terminale ausgepumpt, um die Ausgangslage wiederherzustellen. Die Neurotransmitter befinden sich in Clustern direkt zwischen den an der präsynaptischen Membran angedockten Vesikeln. Das ermöglicht einen sehr starken und schnellen Anstieg der lokalen Ca2+-Konzentration in der Nähe der Vesikel. Durch Konformationsänderungen Calcium-bindender Proteine, besonders von Synaptotagmin wird die exozytotische Fusion der Vesikel mit der präsynaptischen Membran herbeigeführt und der Inhalt der Vesikel in den synaptischen Spalt freigesetzt.
- Neurotransmitterbindung: Die freigesetzten Transmitter diffundieren durch den synaptischen Spalt und binden reversibel an den für sie passenden rezeptorabhängigen Ionenkanälen. Die Neurotransmitter können an der postsynaptischen Membran an für sie spezifische Rezeptoren (Andockstellen) binden.
- Ionenkanalöffnung und Potentialänderung: Die Bindung bewirkt eine Konformationsänderung und damit eine Öffnung, der rezeptorabhängigen Ionenkanäle. Die Kanäle sind also nicht spannungsgesteuert, sondern ligandengesteuert. Das bedeutet: Die Ionenkanäle öffnen sich, sobald ein Transmitter (= Ligand) an den entsprechenden Rezeptor gebunden hat. Durch die geöffneten Ionenkanäle findet ein starker Einstrom an Na+ in die Zelle und ein schwacher Ausstrom K+ aus der Zelle statt. Das führt zu einer Depolarisation der Membran (= Endplattenpotential (EPP) oder postsynaptisches Signal (PSP)).
- Erregung/Hemmung: Die Erregung / Hemmung findet solange statt, wie die Neurotransmitter an den Rezeptoren gebunden sind. Dieser Ein- und Ausstrom hat eine positive oder negative Veränderung der Spannung zur Folge (= postsynaptisches Potential).
- Transmitterabbau und -Wiederaufnahme: Dann können sie wieder von der präsynaptischen Zelle aufgenommen und erneut verwendet werden. Der Transmitter (i.d.F. Acetylcholin) löst sich von den Ionenkanälen und wird an der Acetylcholinesterase in Acetat und Cholin abgebaut, um eine sofortige Neubesetzung des Rezeptors zu verhindern. Die Spaltprodukte werden wieder ins Endknöpfchen aufgenommen und dort neu zu Acetylcholin synthetisiert. Die Synapse ist jetzt voll regeneriert und kann erneut erregt werden! Die Produkte der Spaltung diffundieren zurück in die Präsynapse: Acetat und Cholin werden zurück zur präsynaptischen Membran transportiert und dort aktiv aufgenommen. Regeneration der Neurotransmittervesikel für das nächste Aktionspotential: Im Endknöpfchen werden Acetat und Cholin wieder zu Acetylcholin regeneriert. Der Zyklus kann erneut beginnen. Damit Signale nicht "hängenbleiben", werden Neurotransmitter nach ihrem Einsatz rasch abgebaut oder zurück in die Präsynapse aufgenommen (Reuptake).
Interneuronale Synapsen
Es gibt zwei Arten an chemisch-interneuronalen Synapsen:
- Erregende Synapse
- Hemmende Synapse
Eine erregende Synapse verstärkt die Depolarisation am anbindenden Neuron. Als Transmitter kommen Acetylcholin, Dopamin, Serotonin, u.a. infrage. Die Funktion der Synapse ist analog zu der normalen chemischen Synapse. Die Transmitter öffnen die Ionenkanäle in der postsynaptischen Membran. Darauf folgt die Depolarisation und ein erregendes postsynaptisches Potenzial (EPSP). EPSP führen zu Depolarisation (beides ca. 2 mV).
Eine hemmende / inhibitorische Synapse vermindert die Depolarisation (= Hyperpolarisation) am anbindenden Neuron. Ein Beispiel für einen Transmitter wäre die y-Aminobuttersäure. Im Gegensatz zur normalen Synapse werden bei der hemmenden Synapse K+ bzw. Cl- Kanäle geöffnet. Die darauf folgende Hyperpolarisation führt zu einem inhibitorischen postsynaptischen Potenzial (IPSP). Die Aktivierung hemmender Synapsen führt zu Hyperpolarisation (IPSP), wodurch ihr Membranpotential verändert wird und sie schwerer erregbar sind.
Die Erregung eines Neurons ergibt sich aus der Summe der verschiedenen Signale, die das Neuron erhält. Also alle EPSPs verrechnet mit allen IPSPs (= Synaptische Integration)
Summation
Trotz allem: Nicht jedes Endplattenpotential - egal ob von einer erregenden oder hemmenden Synapse stammend - führt auch zu einer Reizüberschreitung in der postsynaptischen Membran. Oft sind mehrere APo's nötig, um tatsächlich zu einer Muskelkontraktion zu führen oder diese zu unterbinden.
Lesen Sie auch: Regeneration der Nerven nach OP
Es gibt zwei Arten von Summation, die an einem Soma auftreten können: die zeitliche und die räumliche Summation.
- Zeitliche Summation: Innerhalb kürzester Zeit laufen APo's am selben Dendrit in das Soma einer Synapse ein.
- Räumliche Summation: An einem Neuron laufen gleichzeitig mehrere APo's von verschiedenen Dendriten in das Soma einer Nervenzelle ein.
Beide Arten von Summationen führen zu graduierten PSPs.
Neurotransmitter
Die Funktionsweise der meisten Synapsen beruht auf biochemischer Signalübertragung mittels Neurotransmittern. Die Neurotransmitter werden präsynaptisch ausgeschüttet und docken postsynaptisch an spezifische Rezeptoren anderer Neuronen an, wo sie erregend oder hemmend wirken. Schnelle Kommunikation beruht in der Regel auf den Aminosäure-Neurotransmittern Glutamat, GABA oder Glycin, die Ionenkanäle in der Zelle aktivieren. Durch ihre längerfristige, das Gesamtsystem modulierende Wirkung haben auch Amin-Transmitter wie die „Glückshormone“ Serotonin und Dopamin herausragende Bedeutung. Jeder Neurotransmitter hat seine eigenen, spezifischen Rezeptoren - und in der Regel viele verschiedene davon, die sogenannten Subtypen. Unterscheiden lassen sie sich in Laboruntersuchungen beispielsweise dadurch, wie sie auf andere chemische Verbindungen reagieren.
Die heute bekannten Neurotransmitter lassen sich großteils in drei Substanzklassen einordnen. Die drei häufigsten Transmitter Glutamat, GABA und Glycin sind Aminosäuren - kleine Bausteine von Eiweißmolekülen, wie sie im Körper überall vorhanden sind. Serotonin, Dopamin und weitere Transmitter gehören zu den Aminen, die durch enzymatische Reaktionen aus Aminosäuren gebildet werden. Die dritte Gruppe bilden die Neuropeptide, von denen bis heute mehr als 50 entdeckt wurden.
Bekannte Neurotransmittersysteme
Besonders bekannte und bedeutsame Beispiele solcher Neurotransmittersysteme sind das cholinerge System rund um den Transmitter Acetylcholin, das serotonerge System mit dem Botenstoff Serotonin und analog das dopaminerge System mit den Neurotransmitter Dopamin.
Acetylcholin
Acetylcholin wurde wohl deshalb als erster Neurotransmitter entdeckt, weil er für das vegetative Nervensystem sowie an der Schnittstelle zwischen motorischen Nerven und Skelettmuskulatur eine entscheidende Rolle spielt. Aber auch im Gehirn finden sich cholinerge Neuronen. Die wichtigsten davon lassen sich zu zwei diffusen Modulationssystemen zusammenfassen. Unter den zugelassenen Alzheimer-Medikamenten, die den Verlust geistiger Fähigkeiten zumindest verzögern sollen, befinden sich aber Wirkstoffe, die den Acetylcholin-Abbau im Gehirn verlangsamen. Beteiligt sind die cholinergen Neuronen etwa an der Steuerung von Aufmerksamkeit und der Erregbarkeit des Gehirns während Schlaf- und Wachrhythmus.
Serotonin
Neurone, die Serotonin als Botenstoff ausschütten, beeinflussen zum Beispiel das Schmerzempfinden, Schlaf- und Wachrhythmus und den Gemütszustand. Serotonin ist auch außerhalb des zentralen Nervensystems weit verbreitet. Ist Serotonin im Gehirn im Übermaß vorhanden, können Unruhe und Halluzinationen entstehen. Serotoninmangel kann zu depressiven Verstimmungen, Angst und Aggressionen führen. Viele Antidepressiva und Medikamente gegen Angst erhöhen gezielt die Menge verfügbaren Serotonins im Gehirn, etwa indem sie die präsynaptische Wiederaufnahme verlangsamen.
Dopamin
Dopaminhaltige Zellen finden sich vielerorts im Zentralnervensystem, zwei dopaminerge Neuronengruppen haben aber besondere Bedeutung. Eine befindet sich in der Substantia nigra im Mittelhirn und sendet ihre Nerven ins Striatum. Dieser Pfad ist für die Steuerung willkürlicher Bewegungen wichtig: Degenerieren die dopaminergen Zellen in der Substantia nigra, löst das verhängnisvolle motorische Störungen aus - die Parkinson-Krankheit. Das zweite dopaminerge System geht ebenfalls aus dem Mittelhirn hervor, aus dem ventralen Tegmentum. Von dort reichen die Axone in bestimmte Teile des Großhirns und des limbischen Systems. Bekannt ist dieser Pfad deshalb auch als mesocorticolimbisches System. Ihm wird eine wichtige Rolle bei der Motivation zugeschrieben: Es gilt als Belohnungssystem, das bei Tier wie Mensch überlebensdienliche Verhaltensweisen verstärkt. Erhöht man durch geeignete Wirkstoffe die verfügbare Dopamin-Menge, so wirkt sich das stimulierend aus - oft allerdings auch suchterzeugend.
Synaptische Plastizität
Synaptische Plastizität ist die Fähigkeit von Synapsen, ihre Stärke und Effizienz zu verändern - je nachdem, wie oft und wie stark sie benutzt werden. Sie ermöglicht es dem Gehirn, auf Erfahrungen zu reagieren und sich anzupassen. Eine berühmte Form ist die Langzeitpotenzierung (LTP): Werden Synapsen über längere Zeit wiederholt aktiviert, werden sie besonders leistungsfähig. Diese Anpassungsfähigkeit ist die physikalische Grundlage für nahezu alle Lern- und Anpassungsprozesse im Nervensystem - von kindlicher Sprachentwicklung über das Erlernen eines Musikinstruments bis hin zur Regeneration nach einer Gehirnverletzung. Gehirnforscherinnen und -forscher sprechen deshalb oft vom "Gedächtnis der Synapsen".
- Beispiel 1: Lernen am Instrument: Übst du Klavier, verstärken sich relevante Synapsen im Motorkortex.
- Beispiel 2: Reflexe: Hast du je die Hand blitzschnell zurückgezogen, nachdem du etwas Heißes berührt hast?
- Beispiel 3: Lernen unter Stress: Unter Adrenalineinfluss - etwa bei einer Prüfung - werden Synapsen kurzfristig besonders "aufmerksam" und speichern Informationen effizienter.
Synapsengifte
Synapsengifte sind chemische Substanzen, welche die Funktion von Synapsen erheblich stören oder sogar ganz unterbinden können. Diese Gifte blockieren entweder die Abgabe der Neurotransmitter in den synaptischen Spalt, oder aber sie sind den Neurotransmittern so ähnlich, dass sie an ihrer Stelle mit den Rezeptormolekülen in der postsynaptischen Membran reagieren und so die Erregungsleitung stören. Zu den bekanntesten Synapsengiften gehören viele Alkaloide wie etwa Muskarin, Atropin und Curare sowie Nikotin. Ein besonders wirksames Gift überhaupt ist das von Clostridien gebildete Botulinumtoxin.
Synapsengifte entfalten ihre Wirkung an unterschiedlichen Orten: Sie können an der Präsynapse, der Postsynapse oder dem synaptischen Spalt wirken. Botulinumtoxine, Gifte der Bakterien der Gattung Clostridium, verhindern die Vesikelfusion und somit die Ausschüttung von Acetylcholin. Synapsengifte aus der Gruppe der Alkylphosphate hemmen die Aktivität des Enzyms Acetylcholinesterase, das Acetylcholin abbaut. Das Gift des Kugelfischs, Tetrodotoxin (Abk. TTX), blockiert die Natriumkanäle dauerhaft. Curare, ein Pflanzengift, blockiert hingegen die Acetylcholinrezeptoren. Das Gift des Schrecklichen Pfeilgiftfroschs, Batrachotoxin, hat hingegen eine gegenteilige Wirkung. Es bindet zwar ebenfalls an die Acetylcholinrezeptoren der postsynaptischen Membran, führt allerdings zu einer permanenten Aktivierung.
Bedeutung von Synapsen
Synapsen bilden das Fundament für alle Funktionen des Nervensystems: Sie verknüpfen Milliarden von Nervenzellen zu Netzwerken und ermöglichen Wahrnehmung, Bewegung, Denken und Lernen. Sie bestimmen, wie Informationen im Gehirn fließen und verarbeitet werden. Ohne ihre gerichtete Erregungsübertragung wäre eine geordnete Tätigkeit des Nervensystems nicht denkbar. Weiterhin sind S. in ihrer Effizienz modifizierbar, d.h., bei hoher neuronaler Aktivität funktioniert die Übertragung besser als bei geringer oder seltener Aktivität. Sie zeigen somit eine gewisse Plastizität und besitzen Lernfunktionen (Lernen) sowie Gedächtnisfunktionen (Gedächtnis). Zudem sind sie Angriffsort vieler Gifte (Neurotoxine) und Pharmaka (u.a. Psychopharmaka, Drogen).