Synapse: Informationsübertragung und Funktion

Die Synapse ist ein grundlegender Bestandteil des Nervensystems und ermöglicht die Kommunikation zwischen Nervenzellen und anderen Zellen im Körper. Sie spielt eine entscheidende Rolle bei der Informationsverarbeitung und -übertragung.

Was ist eine Synapse?

Eine Synapse ist der Verbindungsbereich zwischen zwei Zellen, meist Nervenzellen, in dem ein Signal chemisch oder elektrisch weitergeleitet wird. Ihre Funktion ist das Übertragen von chemischen oder elektrischen Signalen von einer Nervenzelle zu ihrer Nachbarzelle. Synapsen sind Verbindungsstellen zwischen zwei Zellen, die Informationen (Reize/Erregungen) weiterleiten.

Aufbau einer Synapse

Eine Synapse besteht aus drei Hauptbereichen:

  • Präsynapse: Der Teil der Synapse, von dem das weitergeleitete Signal ausgeht. Hier befinden sich die axonalen Nervenendigungen. Die präsynaptischen Nervenenden enthalten die als Neurotransmitter bezeichneten Signalmoleküle, die in kleinen membranumschlossenen Vesikeln gespeichert sind. Jedes Nervenende im zentralen Nervensystem enthält durchschnittlich mehrere 100 synaptische Vesikel. Dennoch gibt es hier große Unterschiede: So gibt es beispielsweise Spezialisten unter den Synapsen, die mehr als 100.000 Vesikel enthalten. Dazu zählen die Synapsen, die unsere Muskeln steuern.
  • Synaptischer Spalt: Der schmale Raum zwischen der Prä- und Postsynapse, durch den die Neurotransmitter diffundieren.
  • Postsynapse: Die Nachbarzelle, die das Signal empfängt. Hier befinden sich die Rezeptoren, an die die Neurotransmitter binden. Synapsen stellen Kontaktstellen zwischen axonalen Nervenendigungen (die Präsynapse) und postsynaptischen Neuronen dar. An diesen Synapsen wird das elektrische Signal in chemische Botenstoffe umgewandelt, die dann von den Postsynapsen anderer Nervenzellen empfangen werden.

Arten von Synapsen

Es gibt hauptsächlich zwei Arten von Synapsen:

  • Elektrische Synapsen: Bei diesen Synapsen wird das Aktionspotential direkt in elektrischer Form zur benachbarten Zelle weitergeleitet. Sie haben direkte Verbindungskanäle, so genannte Gap junctions, über welche die Intrazellulärräume unmittelbar aneinander grenzender Zellen miteinander gekoppelt sind. Gap junctions sind Poren in der Zellmembran, die durch bestimmte Proteine, die Connexine gebildet werden. Sechs Connexin-Moleküle kleiden die Pore aus, zusammen bilden sie ein Connexon. Durch den Kontakt zwischen zwei Connexonen benachbarter Zellen entsteht ein Kanal, der beide Membranen durchquert. Durch elektrische Synapsen erfolgt eine direkte Ausbreitung von Änderungen des Membranpotentials über einen relativ geringen ohmschen Widerstand, aber auch die Diffusion von Molekülen, wie z.B. sekundärer Botenstoffe. Elektrische Synapsen kommen im Körper eher selten vor und sind dort zu finden, wo eine schnelle Erregungsleitung wichtig ist, wie beispielsweise im Herzmuskel und im Uterus.
  • Chemische Synapsen: Diese Synapsen kommen im Körper viel häufiger vor. Hier wird das elektrische Signal in ein chemisches Signal umgewandelt, indem Neurotransmitter freigesetzt werden. Die Moleküle des Neurotransmitters werden in den Nervenzellen produziert und wandern verstaut in kleinen Bläschen (= Vesikeln) zum Synapsenendknöpfchen des Axons, welches den präsynaptischen Teil der Synapse darstellt. Die Freisetzung von Neurotransmittern wird dort durch einen Anstieg der intrazellulären Calcium-Konzentration innerhalb weniger Millisekunden ausgelöst. Dies geschieht durch die Öffnung spannungsaktivierter Calciumkanäle. Voraussetzung dafür ist ein ankommendes Aktionspotential. Die Neurotransmitter befinden sich in Clustern direkt zwischen den an der präsynaptischen Membran angedockten Vesikeln. Das ermöglicht einen sehr starken und schnellen Anstieg der lokalen Ca2+-Konzentration in der Nähe der Vesikel. Durch Konformationsänderungen Calcium-bindender Proteine, besonders von Synaptotagmin wird die exozytotische Fusion der Vesikel mit der präsynaptischen Membran herbeigeführt und der Inhalt der Vesikel in den synaptischen Spalt freigesetzt. Außer Synaptotagmin ist eine Reihe anderer Proteine beteiligt. Dazu zählen zum Beispiel Complexin I und II, welche die Ausschüttung der Neurotransmitter beschleunigen. Fehlen beide Proteine, ist der Organimsus nicht lebensfähig. Fehlt nur eines der beiden Complexine treten Lernprobleme oder starke Bewegungsstörungen auf. An der postsynaptischen Membran, die auf der anderen Seite des synaptischen Spaltes liegt, werden die freigesetzten Neurotransmitter an Rezeptoren gebunden. Dadurch kann es zu einer Öffnung von ligandenabhängigen Ionenkanälen und damit zu einer Änderung des Membranpotentials der postsynaptischen Nervenzelle kommen. Alternativ kann eine Second-Messenger-Kaskade ausgelöst werden, die ebenfalls zu einer Änderung des Membranpotentials in der postsynaptischen Zelle führt. Die meisten Synapsen sind chemische Synapsen. Grundsätzlich durchläuft die Erregung die chemische Synapse in einer Richtung (»unidirektional«), und zwar vom prä- zum postsynaptischen Teil.

Informationsübertragung an der chemischen Synapse

Damit das Aktionspotential an der chemischen Synapse übertragen werden kann, sind einige Abläufe nötig:

Lesen Sie auch: Synaptische Auswirkungen von Strychnin

  1. Ein Aktionspotential erreicht das Endknöpfchen (Synapse) und führt zu einer Spannungsänderung.
  2. Spannungsabhängige Calciumkanäle öffnen sich.
  3. Calcium-Ionen strömen in das Endknöpfchen, was zu einer Positivierung und Depolarisation der Membran führt.
  4. Mit Neurotransmittern gefüllte Vesikel bewegen sich zur Präsynapse und verschmelzen dort mit ihr. Die Neurotransmitter werden dadurch in den synaptischen Spalt ausgeschüttet.
  5. Der Neurotransmitter diffundiert durch den synaptischen Spalt zur Postsynapse.
  6. Der Neurotransmitter (Ligand) bindet an ligandengesteuerte Kanäle in der postsynaptischen Membran. Diese öffnen sich daraufhin (Ioneneinstrom, z.B. Na+). Die Kanäle sind also nicht spannungsgesteuert, sondern ligandengesteuert. Das bedeutet: Die Ionenkanäle öffnen sich, sobald ein Transmitter (= Ligand) an den entsprechenden Rezeptor gebunden hat.
  7. Dieser Ein- und Ausstrom hat eine positive oder negative Veränderung der Spannung zur Folge (= postsynaptisches Potential). Die Erregung / Hemmung findet solange statt, wie die Neurotransmitter an den Rezeptoren gebunden sind.
  8. Anschließend werden die Neurotransmitter entweder abgebaut oder von der präsynaptischen Zelle aufgenommen und erneut verwendet. Enzym baut den Transmitter ab: Acetylcholin wird z.B. von der Cholinesterase in zwei transportable Bestandteile, Acetat und Cholin, gespalten. Acetat und Cholin kehren zurück zur präsynaptischen Membran und werden aktiv aufgenommen. Regeneration der Neurotransmittervesikel für das nächste Aktionspotential: Acetat und Cholin werden wieder zu Acetylcholin.

Auf der anderen Seite des synaptischen Spaltes treffen die Botenstoffe auf Andockstellen in der Membran des Empfänger-Neurons, die die elektrischen Eigenschaften dieser Membran regulieren. Dadurch ändert sich der Membranwiderstand. Die Empfängerzelle kann die Spannungsänderung, die dadurch entsteht, in einem rasanten Tempo verarbeiten Zwischen dem Eintreffen des Impulses bis zur Spannungsänderung auf der anderen Seite des synaptischen Spalts vergeht nur etwa eine tausendstel Sekunde. Damit stellt die synaptische Übertragung einen der schnellsten biologischen Vorgänge dar.

Synaptische Vesikel und ihre Funktion

Die synaptischen Vesikel sind keineswegs nur eine Art membranumhüllte „Konservendose“ zur Speicherung der Botenstoffe. In ihrer Membran befindet sich eine ganze Reihe von Proteinen, die sich seit Millionen von Jahren durch die Evolution kaum verändert haben. Eine Gruppe dieser Proteine, die Neurotransmitter-Transporter, ist dafür verantwortlich, die Botenstoffe aus dem Zellplasma in die Vesikel hineinzupumpen und dort anzureichern. Dazu ist viel Energie erforderlich. Diese wird von einem weiteren Proteinmolekül bereitgestellt, einer Protonen-ATPase (V-ATPase), die unter Verbrauch von Adenosintriphosphat (ATP) Protonen in die Vesikel hineinpumpt. Neben diesen für das „Auftanken“ erforderlichen Proteinen enthalten die Membranen synaptischer Vesikel weitere Komponenten, die dafür sorgen, dass die Vesikel mit der Plasmamembran verschmelzen können (darunter das SNARE-Protein Synaptobrevin und den Calcium-Sensor Synaptotagmin) und nach der Membranfusion wieder in das Nervenende zurücktransportiert werden. Die synaptische Vesikel werden anschließend im Nervenende über einige Zwischenschritte wieder recycelt und neu mit Botenstoffen befüllt. Die Funktionsweise der synaptischen Vesikel auf molekularer Ebene zu verstehen, ist eine aufwendige Arbeit. Wir haben dazu vor einigen Jahren ein umfassendes Inventar aller Vesikelbestandteile erstellt. Dabei mussten Probleme gelöst werden, die keineswegs so einfach waren, wie man annehmen möchte, z. B. das Auszählen der Vesikel in einer Lösung oder die quantitative Bestimmung des Gehaltes von Proteinen und Membranlipiden. Die Ergebnisse waren auch für Experten überraschend. So stellte sich heraus, dass ein biologisches Transportvesikel in seiner Struktur viel stärker durch Proteine bestimmt wird als zuvor angenommen: Wenn man von außen auf das Vesikelmodell schaut, kann man die Lipidmembran (gelb) vor lauter Proteinen kaum erkennen, und dabei sind im Modell nur ca.

Neurotransmitter und ihre Wirkung

Neurotransmitter sind chemische Botenstoffe, die an den Synapsen freigesetzt werden und an Rezeptoren der postsynaptischen Membran binden. Sie können erregende (exzitatorische) oder hemmende (inhibitorische) Wirkungen haben.

  • Erregende Neurotransmitter: Diese Neurotransmitter erhöhen die Wahrscheinlichkeit, dass in der postsynaptischen Zelle ein Aktionspotential ausgelöst wird (EPSP = exzitatorisches postsynaptisches Potential). Effekt der Rezeptorbindung: Depolarisation Transmitter erregender Synapsen: Glutamat
  • Hemmende Neurotransmitter: Diese Neurotransmitter verringern die Wahrscheinlichkeit, dass in der postsynaptischen Zelle ein Aktionspotential ausgelöst wird (IPSP = inhibitorisches postsynaptisches Potential). Effekt der Rezeptorbindung: Hyperpolarisation Transmitter hemmender Synapsen: Glycin und GABA (γ-Aminobuttersäure)

Die Erregung einer einzelnen Synapse würde jedoch niemals zum Weiterleiten eines Aktionspotentials im angeschlossenen Neuron führen. Vielmehr gibt es erregende (exzitatorische) und hemmende (inhibitorische) Synapsen, welche erregende (EPSP = exzitatorisches postsynaptisches Potential) oder hemmende (IPSP = inhibitorisches postsynaptisches Potential) Wirkung haben können. Nur wenn mehrere erregende EPSP gleichzeitig an verschiedenen Stellen (räumliche Summation) oder in ausreichend schneller zeitlicher Abfolge (zeitliche Summation) in einem Neuron eintreffen, entsteht in diesem ein Aktionspotential. Die Aktivierung hemmender Synapsen führt zu Hyperpolarisation (IPSP), wodurch ihr Membranpotential verändert wird und sie schwerer erregbar sind. EPSP führen zu Depolarisation (beides ca. 2 mV). Diese gequantelte Form der Informationsübertragung wurde zuerst von dem Nobelpreisträger Sir Bernard Katz untersucht und beschrieben. Ein Quantum ist die Menge an Neurotransmittern, die von einem Vesikel ausgeschüttet werden.

Beispiele für wichtige Neurotransmitter

  • Acetylcholin: Hat häufig erregende Eigenschaften und spielt vor allem bei Synapsen im Großhirn, Hirnstamm und Rückenmark eine Rolle. Im Perikaryon wird seine Bildung aus Cholin und Acety-CoA von der Cholinacetyltransferase katalysiert. Auf der postsynaptischen Membran bindet Acetylcholin entweder an muscarinerge oder nicotinerge Rezeptoren. Erstere sind vor allem im Zusammenhang mit dem vegetativen Nervensystem von Bedeutung. Acetylcholin führt zur Öffnung von acetylenabhängigen Kanälen an der Postsynapse, die zu einem Natriumeinstrom und einer Depolarisation dort führen. Bei einer neuromuskulären Synapse führt der Transmitter zur Erregung der verbundenen motorischen Endplatte und damit zu einer Muskelkontraktion.
  • Adrenalin und Noradrenalin: Bedeutende Vertreter der Monoamine. Noradrenerge Synapsen findet man vor allem im Hirnstamm und in vegetativen, sympathischen Fasern.
  • Dopamin: Ein Katecholamin, das sich in den Basalganglien und in Teilen des limbischen Systems befindet.
  • Histamin: Ist in Synapsen zu finden, die an der Regulation des Schlaf-Wach-Rhythmus beteiligt sind.
  • Serotonin: Ein Neurotransmitter des limbischen Systems.
  • GABA (γ-Aminobuttersäure): Gehört zu den Aminosäuren und wirkt in vielen Bereichen des zentralen Nervensystems. Dort hat es eine hemmende Wirkung, wenn es an die verschiedenen Rezeptoren bindet.
  • Glutamat: Der wichtigste Transmitter erregender Synapsen im ZNS. Ein exzitatorisches postsynaptisches Potenzial (EPSP) wird erzeugt, wenn Glutamat an AMPA- oder Kainat-Rezeptoren bindet, wodurch Na+-Ionen eintreten. Der NMDA-Rezeptor ist auch für Ca2+-Ionen durchlässig, was eine langfristige synaptische Plastizität ermöglicht.

Synaptische Plastizität

Neben der Übertragung von Erregung können Synapsen auch Informationen speichern. Synaptische Plastizität bezeichnet die Fähigkeit der synaptischen Verbindungen im Gehirn, ihre Stärke und Effizienz anzupassen. Diese ist grundlegend für das Lernen, die Gedächtnisbildung und die Anpassungsfähigkeit des Nervensystems. Kurzzeitpotenzierung ist eine kurzfristige Verstärkung der Transmitterfreisetzung bei hohen Aktionspotenzialfrequenzen.

Lesen Sie auch: Grundlagen der Signalübertragung an Synapsen

Pharmakologische Beeinflussung der Synapsen

Eine Vielzahl von Medikamenten oder Giftstoffen entfalten ihre Wirkung an den Synapsen und können die Reizweiterleitung an chemischen Synapsen stören oder verhindern. Sie hemmen dann die Informationsübertragung an Synapsen an unterschiedlichen Stellen. Zum Beispiel:

  • Atropin: Hemmt Acetylcholin-Rezeptoren, indem es die Bindung von Acetylcholin verhindert.
  • Nikotin: Aktiviert postsynaptische Rezeptoren, die auch durch Acetylcholin aktiviert werden.

Einige Medikamente entfalten ihre Wirkung auf unterschiedliche Art und Weise an Synapsen. Zu diesen gehören auch gewisse Antidepressiva, die die Wiederaufnahme von Noradrenalin oder Serotonin in die Präsynapse verhindern.

Synapsen und Krankheiten

Synapsen können von Erkrankungen betroffen sein. Aber auch Gifte oder Toxine von Krankheitserrregern können diese Strukturen gezielt ausschalten.

  • Depressionen: Bei Depressionen spielen Störungen der synaptischen Signalübertragung eine zentrale Rolle. Besonders betroffen sind die Botenstoffe Serotonin, Noradrenalin und Dopamin, die an bestimmten Synapsen im Gehirn für die Regulation von Stimmung, Antrieb, Schlaf und emotionalem Erleben verantwortlich sind.
  • Lambert-Eaton-Syndrom: Das Lambert-Eaton-Syndrom ist eine seltene Autoimmunerkrankung, die die Signalübertragung an der neuromuskulären Synapse stört. Normalerweise wird an dieser Synapse der Neurotransmitter Acetylcholin aus der präsynaptischen Nervenzelle freigesetzt, um einen Muskelreiz auszulösen. Bei dem Lambert-Eaton-Rooke-Syndrom bildet das Immunsystem jedoch Antikörper gegen spannungsabhängige Calciumkanäle auf der präsynaptischen Membran. Diese Kanäle sind notwendig, damit Calcium in die Nervenzelle einströmt und die Freisetzung von Acetylcholin auslöst.
  • Myasthenia gravis: Myasthenia gravis ist eine chronische Autoimmunerkrankung, die die Signalübertragung an der neuromuskulären Synapse stört. Dabei bildet das Immunsystem Autoantikörper gegen Acetylcholinrezeptoren auf der postsynaptischen Membran der Muskelzelle. Normalerweise bindet der Neurotransmitter Acetylcholin, der von der Nervenzelle freigesetzt wird, an diese Rezeptoren, um eine Muskelkontraktion auszulösen. Bei Myasthenia gravis blockieren oder zerstören die Autoantikörper jedoch die Rezeptoren, was die Signalweiterleitung stark beeinträchtigt.
  • Vergiftungen mit Phosphorsäureestern: Vergiftungen mit dem Phosphorsäureester Parathion (E 605) führen zu einer irreversiblen Hemmung des Enzyms Acetylcholinesterase, das den Abbau von Acetylcholin am Rezeptor katalysiert. Die Folge ist eine Daueraktivierung der Neurone und Muskelzellen, was zum Tod führen kann.
  • Botulismus: Das Gift des Bakteriums Clostridium botulinum ist das Botolinumtoxin. Es hindert die Synapsen an der Freisetzung von Acetylcholin an der neuromuskulären Endplatte und führt so zur Lähmung der betroffenen Muskulatur. Botulinumtoxin (umgangssprachlich: „Botox“) wird in der Medizin gezielt eingesetzt, um übermäßige Muskelaktivität oder Drüsentätigkeit zu hemmen. Es wirkt an der neuromuskulären Synapse, indem es die Freisetzung von Acetylcholin aus der präsynaptischen Nervenzelle blockiert - dadurch wird die Signalübertragung unterbrochen, und der Muskel entspannt sich. Klinisch wird es z. B.
  • Tetanus: Ein weiteres bakterielles Toxin ist das Gift von Clostridium tetani, welches als Tetanustoxin bekannt ist. Das Tetanustoxin verhindert die Freisetzung von Neurotransmittern in bestimmten Neuronen, da es Synaptobrevin proteolytisch abbaut und damit die Vesikelfusion verhindert.

Die Entstehung von Synapsen

Wie entstehen eigentlich Synapsen, also jene Kontaktstellen, die die Erregungsübertragung von einer Nervenzelle zur anderen ermöglichen? Forschende haben einen entscheidenden Mechanismus aufgedeckt und die Identität der axonalen Transportvesikel aufgeklärt. Die Erkenntnisse liefern wichtige Grundlagen, um künftig die Regeneration von Nervenzellen zu befördern oder auch Alterungsprozessen entgegenzuwirken. Um die Entstehung von Präsynapsen von Anfang an nachverfolgen zu können, haben die Forschenden in humanen Stammzellen per Genschere CRISPR ein leuchtendes Protein eingebaut und aus den so modifizierten Stammzellen Nervenzellen generiert.

Axonaler Transport und Synapsenentstehung

„Die synaptischen Vesikelproteine und die Proteine der sogenannten aktiven Zone ebenso wie die Adhäsionsproteine, die die Synapse zusammenkleben nehmen alle den gleichen Bus“, beschreibt Forschungsgruppenleiter Prof. Dr. Volker Haucke den überraschenden Befund. In der Arbeit konnten die Forschenden zum einen darlegen, dass für den axonalen Transport eine Maschinerie aus Motorproteinen angeworfen wird. Der Haupttreiber ist demnach das sogenannte Kinesin „KIF1A“. Dieses Motorprotein ist vor allem im Zusammenhang mit neurologischen Störungen im peripheren Nervensystem und im Gehirn bekannt. „Wir vermuten, dass Mutationen in KIF1A den axonalen Transport präsynaptischer Proteine behindern und es so zu neurologischen Symptomen wie Bewegungsstörungen, Ataxie oder geistigen Behinderungen kommt", erläutert Volker Haucke. Aber auch die zellbiologische Identität des eigentlichen Transportmittels konnten die Forschenden bestimmen. Und wieder gab es eine Überraschung: Während die allermeisten sekretorischen Vesikel aus dem sogenannten Golgi-Apparat stammen, haben diese axonalen Transportvesikel keine Golgi-Markierung, sondern teilen sich Markierungen mit dem endolysosomalen System, das in anderen Zellen den Abbau von defekten Proteinen bewirkt. „Unsere Arbeit legt nahe, dass Neuronen eine Art neue Organelle erfunden haben, eine Transportorganelle, die es wahrscheinlich in dieser Form nur in Nervenzellen gibt“, erläutert Dr. Sila Rizalar, FMP-Postdoc und Erstautorin der in „Science“ publizierten Arbeit.

Lesen Sie auch: Deine Razer-Tastatur optimal einrichten mit Synapse

Bedeutung für die Klinik

Die neuen Erkenntnisse aus der Grundlagenforschung könnten eines Tages auch für die Klinik nützlich sein. Denn wenn die Kontakte zwischen den Nervenzellen kaputtgehen, sei es durch eine Krankheit, einen Unfall oder schlicht durch den Alterungsprozess, ist es wichtig, den Mechanismus des axonalen Transports und die beteiligten Schlüsselproteine zu kennen, um therapeutisch eingreifen zu können.

Offene Fragen

Obwohl die Forschenden nun einen entscheidenden Mechanismus der Synapsenentstehung entschlüsselt haben, sind noch viele Fragen offen. Zum Beispiel, wie die neu entdeckten Transportorganellen eigentlich entstehen, aus was sie gebaut sind oder wie sie ihre Fracht, die Synapsenmoleküle, am Ort ihrer Bestimmung abliefern. Auch steht die Frage im Raum, ob lebenslange Erinnerungen nicht möglicherweise über den gleichen axonalen Transportmechanismus abgespeichert werden, der für die Bildung von Synapsen verantwortlich ist. All diese Fragen will das Team weiterverfolgen.

tags: #synapse #informationsubertragung #unbeschriftet