Die Wirkung des Transmitters Glycin an der Synapse

Die schnelle Signalübertragung zwischen Nervenzellen erfolgt an spezialisierten Kontaktstellen, den Synapsen, mittels kleiner Botenstoffe, den Neurotransmittern. Ihre regulierte Freisetzung aktiviert spezifische Rezeptoren in nachgeschalteten Nervenzellen. Die Aktivierung dieser Rezeptoren führt dazu, dass die Zielzellen in Abhängigkeit von ihrer Ionenleitfähigkeit entweder angeregt oder in ihrer Aktivität gehemmt werden. Das Zusammenspiel von erregend bzw. hemmend wirkenden Rezeptoren auf den Nervenzellen des zentralen Nervensystems (ZNS) bildet die Grundlage für die Funktion unseres Gehirns und führt bei gestörtem Gleichgewicht zu neurologischen Erkrankungen, wie zum Beispiel Epilepsie oder Schizophrenie. Die Bindung des Neurotransmitters an den Rezeptor und die Öffnung des Rezeptor-Ionenkanals stellen die Schlüsselreaktionen der Rezeptoraktivierung dar, die durch eine Vielzahl von Mechanismen und Substanzen moduliert, d. h. in ihren Eigenschaften verändert werden kann.

Glycin: Ein vielseitiger Neurotransmitter

Glycin, die einfachste aller Aminosäuren mit der molekularen Formel C2H5NO2, wirkt im zentralen Nervensystem von Säugern sowohl als hemmender Neurotransmitter an Strychnin-sensitiven Glyzinrezeptoren als auch zusammen mit Glutamat erregend an den sogenannten N-Methyl-D-Aspartat (NMDA)-Rezeptoren. Glycin ist eine von zwanzig standardisierten Aminosäuren, die zur Herstellung von Proteinen beim Menschen benötigt werden. Es ist die einzige Aminosäure, die kein Chiralitätszentrum besitzt, und ist somit achiral. Mehr noch, es ist die kleinste Aminosäure mit einer Wasserstoffatomen-Seitenkette, die es ermöglicht, flexibel in Proteinstrukturen zu operieren. Glycin unterscheidet sich von anderen Aminosäuren durch seinen chemischen Aufbau. Glycin ist eine natürliche Aminosäure, die im menschlichen Körper vorkommt und für verschiedene biologische Prozesse notwendig ist. Glycin ist in vielen proteinreichen Lebensmitteln wie Fleisch, Fisch, Milchprodukten und Hülsenfrüchten enthalten.

Interessanterweise wirkt Glyzin als hemmender und erregender Neurotransmitter, indem sie an hemmende Glyzinrezeptoren (GlyR) beziehungsweise erregende NMDA-Rezeptoren (NMDAR) bindet. Der für Chloridionen selektive inhibitorische GlyR im Rückenmark von Säugern besteht aus einem fünf Untereinheiten umfassenden membranständigen Rezeptorkomplex und ist maßgeblich an der spinalen Kontrolle des Muskeltonus beteiligt. Seine Blockade durch das kompetitiv zur Glyzinbindung wirkende pflanzliche Alkaloid Strychnin und bei neurologischen Erkrankungen (hereditäre Hyperekplexie) auftretende Mutationen in GlyR-Genen resultieren in Muskelkrämpfen (Myoklonien).

Glycin als hemmender Neurotransmitter

Die Bedeutung von Glycin in Neurobiologie liegt in seiner Rolle als hemmender Neurotransmitter. Es hat die Fähigkeit, die Aktivität von Neuronen zu reduzieren, und hilft dadurch, die neuronale Aktivität zu regulieren. Dies ist besonders wichtig zur Verhinderung von übermäßiger neuronaler Erregung, die zu neurologischen Störungen wie Epilepsie führen kann.

Strukturell ist Glycin einfach und unpolares Molekül, das als hemmender Neurotransmitter im Zentralnervensystem wirkt, was bedeutet, dass es dazu beiträgt, die Nervenaktivität zu dämpfen oder zu verringern. Es erfüllt diese Funktion, indem es nach seiner Freisetzung an spezifische Rezeptoren auf der Zelloberfläche bindet und dadurch die Durchlässigkeit der Zelle für negative Chlorid-Ionen erhöht. Dies hat zur Folge, dass das innere Potential der Nervenzelle abnimmt, wodurch die Erregbarkeit des Neurons reduziert wird. Oder einfacher ausgedrückt: Glycin beruhigt das Gehirn.

Lesen Sie auch: Synaptische Auswirkungen von Strychnin

Glycin wirkt, indem es an bestimmte Rezeptoren auf der Oberfläche von Neuronen bindet. Dies führt zur Öffnung von Kanälen für Chlorid-Ionen. Da Chlorid-Ionen negativ geladen sind, führt ihr Einfluss in das Neuron dazu, dass das Innere des Neurons weniger positiv wird. Dieser Prozess wird als Hyperpolarisation bezeichnet und es wird schwieriger für das Neuron, ein Aktionspotential oder ein „Schuss“ von elektrischer Aktivität zu erzeugen. Einfach ausgedrückt bedeutet dies, dass Glycin die Aktivität von Neuronen dämpft, indem es sie weniger anfällig für Aktivierung macht.

Schlüsselrollen von Glycin in der Neurotransmission

Glycin als hemmender Neurotransmitter hat tiefgreifende Auswirkungen auf die Neurotransmission - den Prozess der Signalübertragung zwischen Neuronen. Insbesondere bestehen die Schlüsselrollen, die Glycin in dieser Hinsicht spielt, in der Regulierung von Erregbarkeit und Aktivität unserer Neuronen.

Erstens kann Glycin als Neurotransmitter die Erregung von Neuronen dämpfen und so die Wahrscheinlichkeit verringern, dass ein Aktionspotential erzeugt wird. Dies ist von entscheidender Bedeutung, um sicherzustellen, dass unsere neuronalen Netzwerke nicht überaktiviert werden, was zu Störungen wie Epilepsie führen kann.

Zweitens beinhaltet die Freisetzung von Glycin in den synaptischen Spalt - dem Raum zwischen Neuronen -, dass es an bestimmte Rezeptoren auf der postsynaptischen Zelle (dem zur Synapse hin gerichteten Teil des Neurons) binden kann. Im speziellen Fall von Glycin handelt es sich bei diesen Rezeptoren um die sogenannten Glycinrezeptoren, die zur Familie der Cys-Loop-Rezeptoren gehören. Diese spezialisierten Rezeptoren haben eine ionotrope Funktion, d.h., sie fungieren als Ionenkanäle: Wenn sie durch das Andocken von Glycin aktiviert werden, öffnen sie sich und lassen Chlorid-Ionenfluss zu, was wie bereits beschrieben die Hyperpolarisation und damit die Reduktion der neuronalen Erregbarkeit bewirkt.

Glycinergic Neurotransmission und Chloride Homeostasis

In der Neurotransmission ist ein ausgewogenes Gleichgewicht zwischen erregenden und hemmenden Signalen für eine gesunde Funktion des Nervensystems notwendig. Glycin, das an den Glycinrezeptor bindet, hat eine entscheidende Funktion in dieser Balance. Es verursacht eine Erhöhung der negativ geladenen Chloridionen im Inneren der Neuronen, was zu einer Verringerung der neuronalen Erregbarkeit führt. Daher wird es als hemmender Neurotransmitter klassifiziert.Gleichzeitig spielt Glycin jedoch auch eine Rolle in der Chlorid-Homöostase. Dies bezieht sich auf das Gleichgewicht, das im Körper aufrechterhalten wird, um die richtige Konzentration von Chloridionen zu gewährleisten. Chloridionen sind essentiell für viele Körperfunktionen, einschließlich der Flüssigkeitsbalance und der Funktion des Nervensystems. Daher ist eine korrekte Chlorid-Homöostase von entscheidender Bedeutung für unsere Gesundheit.

Lesen Sie auch: Überblick: Medikamente & Nervensystem

Im Kontext der Glycinergen Neurotransmission hat die Chlorid-Homöostase besondere Konsequenzen. Da Glycin-Rezeptoren Chloridionenkanäle sind, ist ihr ordnungsgemäße Funktion davon abhängig, dass die Chloridkonzentration auf beiden Seiten der neuronalen Membran korrekt geregelt ist.

Glycin als erregender Neurotransmitter

Der exzitatorische NMDA-Rezeptor ist ein im ZNS weit verbreiteter Vertreter der aus vier Untereinheiten bestehenden Glutamatrezeptor-Familie und benötigt die simultane Bindung der Transmitter-Aminosäuren Glutamat und Glyzin für die Kanalaktivierung. Er besitzt eine hohe Leitfähigkeit für Ca2+-Ionen und stellt eine der molekularen Grundlagen der Plastizität des Nervensystems, d.h. seiner Fähigkeit zu Veränderung und Anpassung, und damit letztlich von Lernvorgängen dar.

Neuere Untersuchungen ergaben, dass Glyzin auch in Abwesenheit von Glutamat als alleiniger Agonist an einem bestimmten NMDA-Rezeptor wirken kann, der im Gegensatz zum klassischen Strychnin-sensitiven, hemmenden GlyR als „exzitatorischer Glyzinrezeptor“ bezeichnet wurde. Im Gegensatz zum „klassischen“ NMDAR, der aus zwei Glyzin-bindenden NR1- und zwei Glutamat-bindenden NR2-Untereinheiten besteht, enthält der exzitatorische Glyzinrezeptor anstatt der NR2-Untereinheiten Glyzin-bindende NR3-Untereinheiten.

Die Untersuchungen zeigten, dass die NMDARs des sog. „exzitatorischen Glyzinrezeptortyps“ aus einer Kombination von je zwei Glyzin-bindenden NR1- und NR3-Untereinheiten bestehen.

Aktivierung des NR1/NR3-Rezeptors

Basierend auf den beschriebenen Befunden und der aufgrund unterschiedlicher Affinitäten sequenziellen Bindung des Neurotransmitters Glyzin an die NR3- und NR1-Untereinheiten wird für die Aktivierung des NR1/NR3-Rezeptors folgendes Modell vorgeschlagen:

Lesen Sie auch: Eine Analyse von DMT und dem Gehirn

  1. Die Bindung von Glyzin an die beiden NR3-Bindungstaschen resultiert in einer Öffnung des Rezeptor-Ionenkanals.
  2. Die nachfolgende Bindung von Glyzin an die niedriger affine NR1-Untereinheit bewirkt eine Schwächung der Wechselwirkungen zwischen den die Bindungstaschen enthaltenden extrazellulären Rezeptordomänen, sodass der Rezeptor in den geschlossenen, desensitisierten Zustand überführt wird.

Modulation durch Zink-Ionen

Das zweiwertige Kation Zn2+ ist aufgrund seiner ubiquitären Beteiligung an vielen biologischen Reaktionen ein essenzielles Spurenelement im Körper; es erfüllt vielfältige Aufgaben als Kofaktor von Proteinen. Neueste Untersuchungen belegen auch eine Anreicherung von Zn2+ in den synaptischen Endigungen inhibitorischer Neurone, die eine starke Expression von GlyRs zeigen.

Es wurde mit Zn2+ eine starke Potenzierung der hemmenden Glyzinantwort in kultivierten Neuronen nachgewiesen. Der Verlust der Zn2+-Bindung führt in der genetisch veränderten Maus zu Krämpfen, einem erhöhten Muskeltonus und einer verstärkten Schreckreaktion, die sich in einer ungewöhnlichen Verspannung der Hinterbeine widerspiegelt. Diese Symptome ähneln denen einer Strychninvergiftung und der menschlichen Erbkrankheit Hyperekplexie und sind konsistent mit einer Reduktion der Glyzin-vermittelten neuronalen Hemmung. Elektrophysiologische Messungen an Hirnschnitten bestätigten, dass die Erkrankung der Maus auf den Verlust der Zn2+-Wirkung am GlyR zurückzuführen ist. Diese Ergebnisse zeigten zum ersten Mal, dass Zn2+ ein wichtiger endogener Regulator bei der hemmenden glyzinergen synaptischen Erregungsübertragung im Gehirn ist.

Es wurde gefunden, dass mikromolare Zn2+-Konzentrationen die Glyzin-induzierten Ströme der Rezeptoren um den Faktor 10 erhöhen. Höhere Zn2+-Konzentrationen führten wie Glyzin zu einer Aktivierung von NR1/NR3-Rezeptoren. Erstaunlicherweise bewirkte in Anwesenheit von Zn2+ die gemeinsame Applikation von Glyzin und einem NR1-Antagonisten eine 125-fache, „supralineare“ Potenzierung des Glyzin-aktivierten Rezeptorstromes. Die durch diese Arbeit beschriebene supralineare Potenzierung könnte einen Weg eröffnen, um NR1/NR3-Rezeptoren in vivo einfacher nachzuweisen und funktionell zu charakterisieren. Die neuen Erkenntnisse über das Aktivierungsverhalten von NR1/NR3-Rezeptoren lassen weiterhin vermuten, dass Zn2+ neben Glyzin für die Aktivierung von nativen NR1/NR3-Rezeptoren physiologisch von wesentlicher Bedeutung sein könnte.

Glycin in der menschlichen Psyche

Als eine wichtige Aminosäure beeinflusst Glycin eine Reihe von Prozessen im menschlichen Körper, einschließlich der mentalen Funktionen. Der Einfluss von Glycin auf die menschliche Psyche ergibt sich größtenteils aus seiner Rolle als hemmender Neurotransmitter im zentralen Nervensystem.

Ein klassisches Beispiel für die Wirkung von Glycin ist seine Rolle bei der Regulation von Schlaf und Wachheit. Es wurde gefunden, dass Glycin die Qualität des Schlafes verbessert, indem es die Körpertemperatur senkt und die Schlafzyklen normalisiert. Darüber hinaus steigert es auch die Produktion von Serotonin, einem wichtigen Neurotransmitter, der bei der Regulierung des Schlaf-Wach-Zyklus eine wesentliche Rolle spielt.

Sicherheit von Glycin

In der Regel wird Glycin gut vertragen und gilt als sicher und ungiftig, auch in höheren Dosen. Es ist ein natürliches Produkt des menschlichen Körpers und als solches spielt es eine wichtige Rolle in vielen physischen Prozessen. Allerdings gibt es einige Berichte über mögliche Nebenwirkungen von Glycin, insbesondere wenn es als Nahrungsergänzungsmittel in hohen Dosen eingenommen wird. Dazu könnten gehören:

  • Magendarmbeschwerden
  • Übelkeit
  • Erbrechen

Es gibt auch Berichte, die auf einen möglichen Zusammenhang zwischen hohen Glycin-Spiegeln im Körper und bestimmten Erkrankungen hinweisen, einschließlich bestimmter Stoffwechselkrankheiten, neurologischen Störungen und Nierenschäden. Allerdings ist zu beachten, dass diese Effekte normalerweise nur bei Menschen auftreten, die ungewöhnlich hohe Mengen an Glycin zu sich nehmen, und für die meisten Menschen ist dies kein Anliegen.

Obwohl die Nebenwirkungen in der Regel mild und vorübergehend sind, ist es immer ratsam, vor Beginn einer Nahrungsergänzung mit Glycin oder einer anderen Substanz einen Arzt zu konsultieren. Dies gilt insbesondere, wenn du andere Medikamente einnimmst oder eine bestehende Gesundheitsbedingung hast.

tags: #Wirkung #des #Transmitters #Glycin #an #der