Die Funktion der Synapse: Signalübertragung im Nervensystem

Die Synapse ist ein essenzieller Bestandteil des Nervensystems und ermöglicht die Kommunikation zwischen Nervenzellen sowie zwischen Nervenzellen und anderen Körperzellen. Diese Verbindungsstellen sind entscheidend für die Weiterleitung von Informationen in Form von elektrischen oder chemischen Signalen. Die synaptische Übertragung ermöglicht Wahrnehmung, Bewegung, Denken und Lernen.

Was ist eine Synapse?

Eine Synapse ist die Kontaktstelle, an der eine Nervenzelle (Neuron) mit einer anderen Nervenzelle oder einer Effektorzelle (z.B. Muskel- oder Drüsenzelle) kommuniziert. Sie ist keine starre Verbindung, sondern ein hochdynamischer, spezialisierter Bereich, der gezielt Reize weiterleitet, filtert, verstärkt oder hemmt. Ganz gleich, ob beim Lernen, Erinnern oder beim Steuern eines Muskels - ohne Synapsen gäbe es keine Kommunikation im Nervensystem.

Aufbau einer Synapse

Eine typische Synapse besteht aus drei Hauptteilen:

  1. Präsynapse: Das Endknöpfchen des sendenden Neurons, auch präsynaptisches Neuron genannt. Hier werden Neurotransmitter in kleinen Bläschen (Vesikeln) gespeichert. Die präsynaptischen Nervenenden enthalten die als Neurotransmitter bezeichneten Signalmoleküle, die in kleinen membranumschlossenen Vesikeln gespeichert sind. Jedes Nervenende im zentralen Nervensystem enthält durchschnittlich mehrere 100 synaptische Vesikel.
  2. Synaptischer Spalt: Ein winziger Zwischenraum (etwa 20-50 Nanometer breit) zwischen dem Endknöpfchen und der nächsten Zelle. Dieser Raum wird als synaptischer Spalt bezeichnet.
  3. Postsynapse: Die Membran der empfangenden Zelle, auch postsynaptisches Neuron genannt. Sie gehört zum Dendriten der nachfolgenden Nervenzelle.

Neben diesen Hauptbestandteilen existiert noch eine Vielzahl regulierender Proteine, Enzyme und Transportmechanismen, die für Präzision und Selektivität in der Signalübertragung sorgen.

Arten von Synapsen

Synapse ist nicht gleich Synapse: Unterschiedliche Anforderungen im Nervensystem haben zur Ausbildung verschiedener Synapsentypen geführt. Generell lassen sich Synapsen in zwei Haupttypen einteilen: chemische und elektrische Synapsen.

Lesen Sie auch: Was macht ein Neurologe wirklich?

Chemische Synapsen

Bei der chemischen Synapse erfolgt die Signalübertragung indirekt mittels Neurotransmittern. Sie ist im menschlichen Nervensystem am häufigsten und ermöglicht komplexe Regulation, Verstärkung und Hemmung. Die chemische Synapse kann sich zwischen zwei Neuronen oder einem Neuron und einer anderen Zelle ausbilden.

Elektrische Synapsen

Diese seltenere Form findet man z.B. im Herzmuskel oder bei gewissen Reflexbahnen. Hier übertragen spezielle Kanäle (Gap Junctions) elektrisch geladene Teilchen (Ionen) direkt von Zelle zu Zelle. Der Signalfluss ist dabei extrem schnell, aber weniger regulierbar als bei der chemischen Synapse. Bei elektrischen Synapsen sind Prä- und Postsynapse über die sogenannten Gap Junctions verbunden. Das sind Zell-Zell-Kontakte, über die ein Austausch von Ionenströmen zwischen den zwei Zellen möglich ist.

Die Funktion der chemischen Synapse im Detail

Die chemischen Synapsen findet man beim Menschen vor allem im Nervensystem und machen den Großteil der synaptischen Verbindungen aus. Ihre Übermittlung von Informationen findet über den Austausch chemischer Moleküle statt. Damit das Aktionspotential an der chemischen Synapse übertragen werden kann, sind einige Abläufe nötig.

  1. Aktionspotential erreicht das Endknöpfchen: Ein Aktionspotential erreicht das Endknöpfchen (Synapse) → Spannungsänderung!
  2. Öffnung der Calciumkanäle: Spannungsabhängige Calcium-Kanäle öffnen sich.
  3. Calcium Einstrom: Calcium(Ca2+)-Ionen strömen in das Endknöpfchen → Positivierung → Depolarisation der Membran! Wenn ein elektrisches Signal im Nervenende eintrifft, werden Calcium-Kanäle in der Plasmamembran aktiviert, durch die Calcium-Ionen vom Außenraum in das Innere der Synapse strömen. Sie treffen auf eine molekulare Maschine, die sich zwischen der Membran der Vesikel und der Plasmamembran befindet und die durch die hereinströmenden Calcium-Ionen aktiviert wird.
  4. Vesikelbewegung und Neurotransmitterausschüttung: Mit Neurotransmitter gefüllte Vesikel bewegen sich darauf hin zur Präsynapse, und verschmelzen dort mit ihr. Die Neurotransmitter werden dadurch in den synaptischen Spalt ausgeschüttet. Diese Maschine bewirkt, dass die Membran der Vesikel, die sich in der Startposition befinden, mit der Plasmamembran verschmilzt.
  5. Diffusion der Neurotransmitter: Der Neurotransmitter diffundiert durch den synaptischen Spalt zur Postsynapse.
  6. Bindung an Rezeptoren: Der Neurotransmitter (Ligand) bindet an ligandengesteuerte Kanäle in der postsynaptischen Membran. Diese öffnen sich daraufhin (Ioneneinstrom, z.B. Na+). Auf der anderen Seite des synaptischen Spaltes treffen die Botenstoffe auf Andockstellen in der Membran des Empfänger-Neurons, die die elektrischen Eigenschaften dieser Membran regulieren.
  7. Abbau der Transmitter: Enzym baut den Transmitter ab: Acetylcholin wird z.B. von der Cholinesterase in zwei transportable Bestandteile, Acetat und Cholin, gespalten.
  8. Rücktransport und Regeneration: Acetat und Cholin → zurück zur präsynaptischen Membran → aktiv aufgenommen. Regeneration der Neurotransmittervesikel für das nächste Aktionspotential: Acetat und Cholin → Acetylcholin.

Neurotransmitter

Neurotransmitter vermitteln die Interaktion zwischen den Zellen und übertragen die Signale. Je nach Transmitter, den eine chemische Synapse freisetzt, erfüllt sie unterschiedliche Aufgaben. Auch der Rezeptor auf der postsynaptischen Membran spielt eine wichtige Rolle bei der Unterscheidung der Funktion. Beim Menschen wurden mehr als 500 verschiedene Neurotransmitter identifiziert.

  • Acetylcholin: Die quartäre Ammoniumverbindung Acetylcholin hat häufig erregende Eigenschaften und spielt vor allem bei Synapsen im Großhirn, Hirnstamm und Rückenmark eine Rolle. Im Perikaryon wird seine Bildung aus Cholin und Acety-CoA von der Cholinacetyltransferase katalysiert. Auf der postsynaptischen Membran bindet Acetylcholin entweder an muscarinerge oder nicotinerge Rezeptoren. Erstere sind vor allem im Zusammenhang mit dem vegetativen Nervensystem von Bedeutung.
  • Monoamine: Bedeutende Vertreter der Monoamine sind Adrenalin und Noradrenalin. Aber auch Dopamin, Histamin und Serotonin gehören zu ihnen. Noradrenerge Synapsen findet man vor allem im Hirnstamm und in vegetativen, sympathischen Fasern. Histamin ist in Synapsen zu finden, die an der Regulation des Schlaf-Wach-Rhythmus beteiligt sind. Das Katecholamin Dopamin befindet sich in den Basalganglien und in Teilen des limbischen Systems. Auch Serotonin ist ein Neurotransmitter des limbischen Systems.
  • GABA: GABA gehört zu den Aminosäuren und wirkt in vielen Bereichen des zentralen Nervensystems. Dort hat es eine hemmende Wirkung, wenn es an die verschiedenen Rezeptoren bindet.
  • Neuropeptide: Viele Neuropeptide fungieren als Neurotransmitter. Neuropeptide binden an spezifische Rezeptoren, meist G-Protein-gekoppelte Rezeptoren, und beeinflussen vielfältige Prozesse wie Schmerzempfinden, Appetit, Schlaf, Stimmung oder Stressreaktionen.

Erregende und hemmende Synapsen

Synapsen können entweder erregend oder hemmend wirken.

Lesen Sie auch: Überblick über die Aufgaben des Kleinhirns

  • Erregende Synapsen: Erregende Synapsen sorgen für eine Depolarisation (Erregung) der Zielzelle - typisches Beispiel: Glutamat wirkt stimulierend im Gehirn.
  • Hemmende Synapsen: Hemmende Synapsen dagegen hyperpolarisieren ihre Zielzelle, bremsen also den Signalfluss - wie GABA oder Glycin.

Inhibitorische Synapsen hemmen die Erregung auf die nachfolgende Zelle.

Rücknahme und Abbau von Neurotransmittern

Damit Signale nicht "hängenbleiben", werden Neurotransmitter nach ihrem Einsatz rasch abgebaut oder zurück in die Präsynapse aufgenommen (Reuptake). Mit der Zeit wird beispielsweise Acetylcholin enzymatisch durch Acetylcholinesterase in Cholin und Acetat zerlegt, die dann wieder in die Präsynapse aufgenommen werden. Dort werden aus Cholin und Acetat erneut Acetylcholin synthetisiert und in Vesikel verpackt, um für die Weiterleitung eines neuen Potenzials bereit zu sein. Während dieser Zeit kann auf kein neues Aktionspotenzial reagiert werden.

Synaptische Plastizität

Synaptische Plastizität ist die Fähigkeit von Synapsen, ihre Stärke und Effizienz zu verändern - je nachdem, wie oft und wie stark sie benutzt werden. Sie ermöglicht es dem Gehirn, auf Erfahrungen zu reagieren und sich anzupassen. Eine berühmte Form ist die Langzeitpotenzierung (LTP): Werden Synapsen über längere Zeit wiederholt aktiviert, werden sie besonders leistungsfähig. Diese Anpassungsfähigkeit ist die physikalische Grundlage für nahezu alle Lern- und Anpassungsprozesse im Nervensystem - von kindlicher Sprachentwicklung über das Erlernen eines Musikinstruments bis hin zur Regeneration nach einer Gehirnverletzung. Gehirnforscherinnen und -forscher sprechen deshalb oft vom "Gedächtnis der Synapsen".

Beispiel 1: Lernen am Instrument

Übst du Klavier, verstärken sich relevante Synapsen im Motorkortex.

Lesen Sie auch: Das ZNS im Detail erklärt

Beispiel 2: Reflexe

Hast du je die Hand blitzschnell zurückgezogen, nachdem du etwas Heißes berührt hast?

Beispiel 3: Lernen unter Stress

Unter Adrenalineinfluss - etwa bei einer Prüfung - werden Synapsen kurzfristig besonders "aufmerksam" und speichern Informationen effizienter.

Bedeutung für die Gesundheit: Erkrankungen und Toxine

Synapsen können von Erkrankungen betroffen sein. Aber auch Gifte oder Toxine von Krankheitserrregern können diese Strukturen gezielt ausschalten. Nicht immer funktioniert die synaptische Übertragung reibungslos.

  • Depressionen: Bei Depressionen spielen Störungen der synaptischen Signalübertragung eine zentrale Rolle. Besonders betroffen sind die Botenstoffe Serotonin, Noradrenalin und Dopamin, die an bestimmten Synapsen im Gehirn für die Regulation von Stimmung, Antrieb, Schlaf und emotionalem Erleben verantwortlich sind.
  • Lambert-Eaton-Syndrom: Das Lambert-Eaton-Syndrom ist eine seltene Autoimmunerkrankung, die die Signalübertragung an der neuromuskulären Synapse stört. Normalerweise wird an dieser Synapse der Neurotransmitter Acetylcholin aus der präsynaptischen Nervenzelle freigesetzt, um einen Muskelreiz auszulösen. Bei dem Lambert-Eaton-Rooke-Syndrom bildet das Immunsystem jedoch Antikörper gegen spannungsabhängige Calciumkanäle auf der präsynaptischen Membran. Diese Kanäle sind notwendig, damit Calcium in die Nervenzelle einströmt und die Freisetzung von Acetylcholin auslöst.
  • Myasthenia gravis: Myasthenia gravis ist eine chronische Autoimmunerkrankung, die die Signalübertragung an der neuromuskulären Synapse stört. Dabei bildet das Immunsystem Autoantikörper gegen Acetylcholinrezeptoren auf der postsynaptischen Membran der Muskelzelle. Normalerweise bindet der Neurotransmitter Acetylcholin, der von der Nervenzelle freigesetzt wird, an diese Rezeptoren, um eine Muskelkontraktion auszulösen. Bei Myasthenia gravis blockieren oder zerstören die Autoantikörper jedoch die Rezeptoren, was die Signalweiterleitung stark beeinträchtigt. Betroffene berichten von Erschöpfung und Müdigkeit am Ende des Tages.
  • Parkinson-Krankheit: neurodegenerative Erkrankung, bei der die Produktion von Dopamin durch Zerstörung der produzierenden Zellen in der Substantia nigra vermindert ist.
  • Vergiftungen: Vergiftungen mit dem Phosphorsäureester Parathion (E 605) führen zu einer irreversiblen Hemmung des Enzyms Acetylcholinesterase, das den Abbau von Acetylcholin am Rezeptor katalysiert. Die Folge ist eine Daueraktivierung der Neurone und Muskelzellen, was zum Tod führen kann.
  • Botulismus: Das Gift des Bakteriums Clostridium botulinum ist das Botolinumtoxin. Es hindert die Synapsen an der Freisetzung von Acetylcholin an der neuromuskulären Endplatte und führt so zur Lähmung der betroffenen Muskulatur. Botulinumtoxin gehört zu den giftigsten bekannten Proteinen. Clostridien produziert. Wenn Botulinumtoxin an die synaptischen Vesikelproteine und Ganglioside bindet, verhindert es die Freisetzung von Acetylcholin, einem stimulierenden Neurotransmitter.
  • Tetanus: Ein weiteres bakterielles Toxin ist das Gift von Clostridium tetani, welches als Tetanustoxin bekannt ist. Das Tetanustoxin verhindert die Freisetzung von Neurotransmittern in bestimmten Neuronen, da es Synaptobrevin proteolytisch abbaut und damit die Vesikelfusion verhindert. Verhinderung der Freisetzung des hemmenden Neurotransmitters GABA. Muskelphysiologie der Skelettmuskulatur, die sich durch Krämpfe zeigt. Besonders betroffen ist die Kiefermuskulatur. Dadurch entsteht das klassische Zeichen der Kieferklemme. Im Verlauf wird zudem die Atemmuskulatur gelähmt.
  • Autismus-Spektrum-Störung: neurologische Entwicklungsstörung, die durch reduzierte soziale Fähigkeiten, eingeschränkte Interessen und soziale Interaktionen sowie sich wiederholende und stereotype Verhaltensweisen gekennzeichnet ist. Diese Störung wird aufgrund der großen Variabilität in der Ausprägung und Symptomatik als „Spektrum“ bezeichnet. Autismus-Spektrum-Störung leiden unter schweren Beeinträchtigungen der Sprachfähigkeit und des Intellekts, während andere einen normalen oder sogar fortgeschrittenen Intellekt aufweisen.
  • Chorea Huntington: progressive neurodegenerative Erkrankung mit autosomal-dominanter Vererbung. Sie wird durch vervielfältigte CAG-Triplett-Wiederholungen (Cytosin-Adenin-Guanin) im Huntingtin-Gen (HTT) verursacht. Zum klinischen Erscheinungsbild im Erwachsenenalter gehören eine Bewegungsstörung, die als Chorea bezeichnet wird. Es handelt sich dabei um abrupte, unwillkürliche Bewegungen des Gesichts, des Rumpfes und der Extremitäten.
  • Schizophrenie: schwere chronische psychische Störung. Schizophrenie ist gekennzeichnet durch das Vorhandensein psychotischer Symptome, desorganisierten Sprechens oder Verhaltens, Affektverflachung, Avolition, Anhedonie, verminderte Aufmerksamkeitsfähigkeit und Alogie.

Medikamentöse Beeinflussung

Einige Medikamente entfalten ihre Wirkung auf unterschiedliche Art und Weise an Synapsen. Zu diesen gehören auch gewisse Antidepressiva, die die Wiederaufnahme von Noradrenalin oder Serotonin in die Präsynapse verhindern.

  • Botox: Botulinumtoxin (umgangssprachlich: „Botox“) wird in der Medizin gezielt eingesetzt, um übermäßige Muskelaktivität oder Drüsentätigkeit zu hemmen. Es wirkt an der neuromuskulären Synapse, indem es die Freisetzung von Acetylcholin aus der präsynaptischen Nervenzelle blockiert - dadurch wird die Signalübertragung unterbrochen, und der Muskel entspannt sich. Klinisch wird es z. B.

tags: #Aufgabe #einer #Synapse #Funktion