Das menschliche Gehirn ist ein faszinierendes und komplexes Organ, das unser Denken, Verhalten und Empfinden steuert und beeinflusst. Es ist die Schaltzentrale, die unser Denken, Verhalten und Empfinden steuert und beeinflusst. Es ist für viele kognitive Funktionen verantwortlich, und seine Plastizität ermöglicht es ihm, sich an neue Herausforderungen und Erfahrungen anzupassen. Doch trotz jahrhundertelanger Forschung bleibt das Gehirn ein Rätsel, das nur teilweise entschlüsselt wurde.
Übersicht über das menschliche Gehirn
Das Gehirn (Cerebrum) des Menschen wiegt im Schnitt 1.400 Gramm - abhängig von Geschlecht und Körpergröße. Mit dieser verhältnismäßig geringen Masse steuert es nahezu alle lebenswichtigen Körperfunktionen, ermöglicht das Denken, emotionales Erleben und viele weitere Abläufe. Es besteht aus Milliarden von Neuronen und Gliazellen. Das Gehirn verarbeitet Sinneseindrücke, koordiniert die Funktionen des Körpers und hält sie aufrecht. Voraussetzung dafür: Milliarden von Gehirnnervenzellen (Neuronen, reizleitende Zellen) müssen ständig miteinander kommunizieren und Informationen austauschen.
Hauptbereiche des Gehirns
Das menschliche Gehirn ist ein komplexes Organ und wird in vier Hauptbereiche unterteilt:
Das Großhirn (Telencephalon): Das Großhirn, auch Cerebrum genannt, ist der größte Teil des Gehirns und macht etwa 85% des Gesamtvolumens aus. Es besteht aus zwei Hälften, den sogenannten Hemisphären, die durch eine tiefe Fissur getrennt sind. Jede Hemisphäre besteht aus vier Lappen: dem Frontallappen (dt. Stirnlappen), dem Parietallappen (dt. Scheitellappen), dem Temporallappen (dt. Schläfenlappen) und dem Okzipitallappen (dt. Hinterhauptlappen). Durch ihre dichte Vernetzung elektrischer Signalwege ermöglichen sie komplexe Hirnfunktionen, wie Bewegung, Sinneswahrnehmung, Sprache und Gedächtnis.
- Die Oberfläche des Großhirns besteht aus zahlreichen Windungen und Furchen, die auch als Gyri und Sulci bezeichnet werden. Diese komplexe Struktur erhöht die Oberfläche des Gehirns und ermöglicht es, eine große Anzahl von Neuronen auf kleinem Raum unterzubringen und somit die Leistungsfähigkeit des Gehirns zu erhöhen. Die größten Furchen werden als Längs-, Quer- und Seitenfurchen bezeichnet und als Trennlinien genutzt, um die vier Hirnlappen anatomisch voneinander zu unterscheiden.
Das Kleinhirn (Cerebellum): Das Kleinhirn wiegt mit circa 130 bis 140 Gramm zehnmal weniger als das Großhirn. Das Kleinhirn liegt an der Basis des Schädels unter dem Hinterhauptlappen des Großhirns. Es befindet sich unterhalb des Großhirns und ist für die Koordination von Bewegungen und die Aufrechterhaltung des Gleichgewichts zuständig. Neue Studien zeigen, dass es außerdem an Lernprozessen und weiteren kognitiven Prozessen beteiligt ist. Es hat eine charakteristische, feine Oberflächenstruktur, die aus vielen kleinen Furchen und Windungen besteht. Verbindungen zur Großhirnrinde, zum Hirnstamm, zum Rückenmark und zum Gleichgewichtsorgan ermöglichen es dem Kleinhirn, seine wichtigen Funktionen zu erfüllen. Wie das Großhirn hat auch das Cerebellum eine Rinde; in ihr liegt die graue Substanz des Kleinhirns: die Zellkörper der Nervenzellen. Das Cerebellum gibt keine Bewegungsimpulse, vielmehr stimmt es Bewegungen fein ab, erhält die Muskelspannung und das Gleichgewicht. Es stimmt Bewegungen aufeinander ab und speichert Abläufe, sodass nach einiger Übung bestimmte Bewegungen automatisch erfolgen.
Lesen Sie auch: Gehirn: Grundlagen und Erkenntnisse
Das Zwischenhirn (Diencephalon): Das Zwischenhirn liegt zwischen Großhirn und Hirnstamm. Es liegt zwischen dem Großhirn und dem Hirnstamm. Seine größte Struktur, der Thalamus, filtert eingehende Signale von unseren Sinnesorganen und leitet sie dann an das Großhirn weiter. Der Hypothalamus steuert als übergeordnetes Schaltzentrum zum Beispiel den Schlaf-Wach-Rhythmus, den Wasserhaushalt, die Schweißsekretion sowie Schmerz- und Temperaturempfinden. Er lässt sich sowohl über Nerven als auch durch Hormone beeinflussen. Der Hypothalamus steht in direktem Kontakt mit der Hirnanhangsdrüse (Hypophyse) und verbindet das Hormon- mit dem Nervensystem. Im Thalamus treffen Informationen aus dem Körper und den verschiedenen Sinnesorganen ein. Dies vermeidet, dass das Hirn überlastet wird.
Der Hirnstamm (Truncus cerebri): Der Hirnstamm ist der älteste Teil des Gehirns. Er befindet sich unterhalb des Zwischenhirns und ist der Übergangsbereich zwischen dem Gehirn und dem Rückenmark. Er umfasst eine Vielzahl von Kerngebieten, die für lebenswichtige Funktionen wie Atmung, Herzfrequenz und Blutdruckregulation verantwortlich sind. Er befindet sich unter den anderen Abschnitten nahe dem Rückenmark und wird fast vollständig von beiden Hirnhälften, den Hemisphären, umschlossen. Im Nachhirn kreuzen die aus dem Rückenmark kommenden Nervenbahnen. Das führt dazu, dass Informationen einer Körperseite in der gegenüberliegenden Hirnhälfte verarbeitet werden.
Die vier Komponenten des Gehirns sind miteinander verbunden und kommunizieren über Milliarden von Nervenzellen, die auch als Neuronen bezeichnet werden. Diese Kommunikationswege heißen Synapsen und mehrere Billiarden Synapsen im menschlichen Gehirn bilden komplexe Schaltkreise, die für die Verarbeitung von Informationen und die Steuerung von Bewegungen und Verhalten verantwortlich sind.
Gehirnwindungen und Furchen
Die Oberfläche des Großhirns besteht aus zahlreichen Windungen und Furchen, die auch als Gyri und Sulci bezeichnet werden. Diese komplexe Struktur erhöht die Oberfläche des Gehirns und ermöglicht es, eine große Anzahl von Neuronen auf kleinem Raum unterzubringen und somit die Leistungsfähigkeit des Gehirns zu erhöhen. Die Windungen und Furchen des Gehirns sind nicht gleichmäßig verteilt. Die größten Furchen werden als Längs-, Quer- und Seitenfurchen bezeichnet und als Trennlinien genutzt, um die vier Hirnlappen anatomisch voneinander zu unterscheiden.
Die Anzahl und das Muster von Windungen und Furchen im Gehirn können auch durch Umweltfaktoren beeinflusst werden. So weisen beispielsweise eineiige Zwillinge nicht dieselben Strukturen auf der Hirnoberfläche auf. Insgesamt sind die Windungen und Furchen des Gehirns ein faszinierendes Beispiel für die komplexe Struktur des menschlichen Körpers und deren Anpassung an spezifische Funktionen und Umweltbedingungen.
Lesen Sie auch: Nervensystem: Anatomie im Detail
Rechte und linke Hemisphäre
Das Gehirn besteht aus zwei Hälften (Hemisphären), die durch den sogenannten Balken (Corpus callosum) miteinander verbunden sind. Das Gehirn lässt sich in eine rechte und eine linke Gehirnhälfte unterteilen. Diese beiden Hälften sind allerdings über einen dicken Strang Nervenfasern, dem corpus callosum, verbunden und arbeiten zusammen. Die meisten Funktionszentren kommen gleichermaßen in beiden Hirnhälften vor. Einige Zentren jedoch gibt es nur einmal - wie etwa das Sprachzentrum.
Jede Hemisphäre besteht dabei aus einer Großhirn-, einer Zwischenhirn- und einer Kleinhirnhälfte, die auf Funktionen spezialisiert sind, aber gleichzeitig kontinuierlich miteinander kommunizieren. Das Großhirn beherbergt den motorischen Kortex, der Signale an die Muskeln sendet und Bewegungen steuert. Hierbei übernimmt jeweils eine Seite des Gehirns eine Hälfte des Körpers. Interessant ist, dass jeweils die entgegengesetzte Seite gesteuert wird. Das heißt, die rechte Gehirnhälfte steuert die linke Seite des Körpers. Diese Organisation führt bei einem Schlaganfall dazu, dass es bei einer Schädigung des rechten motorischen Kortex’ zu einer Lähmung in der linken Körperhälfte kommt.
Aufbau des Nervensystems
Das Gehirn setzt sich aus Nervenzellen, sogenannten Gliazellen (Stütz- und Versorgungsgewebe) und Blutgefäßen zusammen. Das Nervensystem des menschlichen Körpers besteht aus Neuronen, Gliazellen und Synapsen.
- Neuronen sind spezialisierte Zellen, die Signale in Form von elektrischen Impulsen empfangen, verarbeiten und weiterleiten. Sie bestehen aus einem Zellkörper, Dendriten und einem Axon. Dendriten empfangen Signale von anderen Neuronen und leiten sie an den Zellkörper weiter. Das Axon sendet Signale an andere Neuronen oder an Muskeln oder Drüsen.
- Gliazellen sind Zellen, die das Gehirn und das Rückenmark umgeben und unterstützen. Sie liefern den Neuronen Nährstoffe und Sauerstoff, entfernen Abfallprodukte und helfen, die Neuronen zu schützen. Gliazellen tragen auch dazu bei, dass sich Neuronen bei Verletzungen wieder regenerieren. Gliazellen machen etwa 50 Prozent der gesamten Hirnmasse aus. Die meisten Hirntumoren entstehen aus diesen Gliazellen (sog. Gliome, z. B. Astrozyten haben für den Stoffwechsel und die Versorgung des Gehirns eine wichtige Funktion und sind am Aufbau der Blut-Hirn-Schranke beteiligt. Oligodendrozyten bilden die Markscheiden um die Nervenzellfortsätze, die Ependymzellen kleiden die Gehirnkammern (Ventrikel) aus.
- Synapsen sind die Verbindungen zwischen Neuronen. Sie ermöglichen es Neuronen, Signale zu senden und zu empfangen. Synapsen funktionieren durch die Freisetzung von Neurotransmittern aus dem “Senderneuron”, die an Rezeptoren auf einem “Empfängerneuron” binden. Dieser Prozess erzeugt ein elektrisches Signal im Empfängerneuron, das in seinem Zellkern mit den Signalen von anderen Synapsen integriert wird. Synapsen sind der Ort, an dem Informationen im Gehirn verarbeitet werden und Lernen und Gedächtnisbildung stattfinden.
Insgesamt arbeiten Neuronen und Gliazellen zusammen, um ein komplexes Netzwerk zu bilden, das die Grundlage für die Informationsverarbeitung im Gehirn bildet.
Dimensionen des Gehirns
Die Dimensionen des Gehirns sind beeindruckend. Zwar macht das Gehirn nur zwei bis drei Prozent der Gesamtmasse unseres Körpers aus, verbraucht allerdings 20% seiner Energie. Damit versorgt unser Körper etwa 86 Milliarden Neuronen sowie die gleiche Anzahl an Gliazellen. Der Speicherplatz des Gehirns wird auf ein Petabyte geschätzt, das sind 1.000.000 Gigabyte. Dass wir nicht unser gesamtes Gehirn nutzen, ist übrigens ein Mythos. Zwar sind nicht alle Teile des Gehirns gleichzeitig aktiv, trotzdem hat jeder Bereich seine Spezialisierung und kommt auch regelmäßig zum Einsatz.
Lesen Sie auch: Fortschritte in der Gehirnkartierung
Steuerung des Körpers durch das Gehirn
Von einfachen Handgriffen bis zu komplexen Tanzschritten - das Gehirn steuert, meist automatisch, alle unsere Bewegungen. Dabei arbeiten die verschiedenen Bereiche des Gehirns nahtlos zusammen. Auch das Rückenmark spielt hierbei eine Schlüsselrolle. Es fungiert als Schnittstelle zwischen dem Gehirn und unserem Körper, leitet Signale an die Muskeln und ist für einfache Reflexe verantwortlich.
Wie das Rückenmark und das Gehirn zusammenarbeiten
Das Rückenmark und das Gehirn arbeiten eng zusammen, um das reibungslose Funktionieren des Körpers zu gewährleisten. Das Rückenmark ist ein Teil des zentralen Nervensystems (ZNS) besteht aus zwei großen Teilen: dem im Kopf gelegenen Gehirn und dem Rückenmark und dient als Verbindung zwischen dem Gehirn und den peripheren Nerven des Körpers. Es verläuft entlang der Wirbelsäule und besteht aus Nervenfasern, die Signale vom Gehirn zu den Muskeln und Drüsen des Körpers übertragen.
Das Gehirn ist das Kontrollzentrum des Körpers und sendet ständig Signale an das Rückenmark, um Körperfunktionen wie Atmung, Herzschlag, Verdauung und Bewegung zu regulieren. Diese Signale werden entlang des Rückenmarks weitergeleitet und führen zur Aktivierung der entsprechenden Muskeln oder Drüsen. Zusätzlich werden über das Rückenmark auch Signale an das Gehirn gesendet, um Informationen über Schmerzen, Berührungen und andere sensorische Reize zu übermitteln. Dieses Zusammenspiel zwischen Rückenmark und Gehirn ermöglicht es dem Körper, auf seine Umgebung zu reagieren und seine Funktionen zu regulieren.
Insgesamt ist die Zusammenarbeit von Rückenmark und Gehirn von großer Bedeutung für das reibungslose Funktionieren des Körpers.
Gehirn und Körper stehen im ständigen Austausch
Die Verbindung zwischen Gehirn und Körper ist von entscheidender Bedeutung für unser alltägliches Leben. Das Gehirn ist das Kontrollzentrum des Körpers, welches alle Körperfunktionen steuert, einschließlich der Bewegungen, der Sinneswahrnehmung und der Organtätigkeit. Es kommuniziert mit den Sinnesorganen, den Skelettmuskeln, den Drüsen und der glatten, von uns nicht bewusst steuerbaren Muskulatur, wie von Blutgefäßen, der Lunge und Verdauungsorgane. Diese Kommunikation läuft fast ausschließlich über die Nervenbahnen im Rückenmark.
Kognitive Funktionen und Plastizität im Gehirn
Das menschliche Gehirn ist nicht nur für die Steuerung des Körpers verantwortlich, sondern auch für eine Vielzahl von kognitiven Funktionen wie Lernen, Gedächtnis, Sprache und Entscheidungsfindung. Diese kognitiven Funktionen beruhen auf komplexen neuronalen Netzwerken, die sich im Laufe des Lebens entwickeln und verändern.
Die Plastizität des Gehirns
Die Plastizität des Gehirns ist eine faszinierende Eigenschaft, die es dem Gehirn ermöglicht, sich an neue Herausforderungen, Veränderungen und Erfahrungen anzupassen. Das Gehirn kann durch die Bildung neuer Verbindungen zwischen Neuronen und die Modifikation bestehender Verbindungen seine Funktionen verändern und verbessern. Dieser Prozess der Anpassungsfähigkeit findet während der gesamten Lebensspanne statt und wird durch Faktoren wie Lernen, Erfahrung, körperliche Aktivität und Umgebung beeinflusst.
Beispielsweise kann sich das Gehirn nach einem Schlaganfall oder einer Verletzung aufgrund von neuroplastischen Mechanismen regenerieren. Wenn ein Teil des Gehirns beschädigt wird, können andere Teile des Gehirns die Funktionen dieses beschädigten Bereichs übernehmen. Darüber hinaus kann das Gehirn auch in der Lage sein, neue Verbindungen zwischen Neuronen zu bilden, um verlorene Funktionen wiederzugewinnen.
Die Plastizität des Gehirns spielt auch eine wichtige Rolle beim Lernen und Gedächtnis. Wenn wir etwas lernen, werden neue neuronale Verbindungen gebildet und bestehende Verbindungen verstärkt. Durch diese Veränderungen kann das Gehirn Informationen schneller und effektiver verarbeiten, wodurch wir unsere kognitiven Fähigkeiten verbessern. Darüber hinaus kann die Plastizität des Gehirns auch durch körperliche Aktivität und Umgebung beeinflusst werden. Wenn wir unser Gehirn regelmäßig durch kognitive Aktivitäten oder körperliches Training herausfordern, kann dies die Neubildung von neuronalen Verbindungen und die Verbesserung kognitiver Fähigkeiten wie Gedächtnis, Aufmerksamkeit und Problemlösung fördern.
Insgesamt ist die Plastizität des Gehirns ein faszinierendes Phänomen, das unser Verständnis des menschlichen Gehirns und seiner Fähigkeit zur Anpassungsfähigkeit erweitert hat. Dies hat auch wichtige Implikationen für die Behandlung von Gehirnerkrankungen und die Verbesserung unserer kognitiven Fähigkeiten und Lebensqualität.
Das Gedächtnis
Ein weiterer wichtiger Aspekt der kognitiven Funktionen des Gehirns ist das Gedächtnis. Das Gehirn ist in der Lage, Erinnerungen zu speichern und abzurufen, indem es verschiedene Formen von Gedächtnissen verwendet: Das Arbeitsgedächtnis, Kurzzeitgedächtnis und Langzeitgedächtnis. Der Hippocampus spielt eine wichtige Rolle bei der Bildung des Langzeitgedächtnisses, indem er Informationen aus dem Kurzzeitgedächtnis konsolidiert und sie in der Großhirnrinde speichert.
Die Sprache
Das Gehirn ist auch entscheidend für die Sprachfunktionen des Menschen, einschließlich der Fähigkeit, Sprache zu verstehen, zu sprechen und zu lesen. Die Sprachfunktionen des Gehirns sind hauptsächlich in der linken Hemisphäre lokalisiert und umfassen verschiedene Regionen, darunter das Broca-Areal und das Wernicke-Areal. Das Broca-Areal ist für die Sprachproduktion zuständig, während das Wernicke-Areal das Verständnis von Sprache ermöglicht. Das Broca-Areal liegt im Stirnlappen, während das Wernicke-Areal im Schläfenlappen liegt. Sie sind durch eine dicke Nervenfaser, den fasciculus arcuatus, verbunden.
Schutz und Versorgung des Gehirns
Das Gehirn muss in besonderem Maße vor Verletzungen geschützt werden. Liquor ist die Flüssigkeit, die Gehirn und Rückenmark umgibt. Welche Funktionen hat Liquor? Das Gehirn wird von den Schädelknochen und innerhalb des Schädels von drei Hirnhäuten (Meningen) umgeben. harte Hirnhaut (Dura mater)Spinngewebshaut (Arachnoidea): Hier verlaufen zahlreiche Blutgefäße. In dieser festen Hülle schwimmt es gewissermaßen im Hirnwasser, dem Liquor. Die Ventrikel stehen mit den äußeren Liquorräumen in Verbindung. Auch das Rückenmark ist von Liquor umgeben.
Bedeutsam sind auch die zahlreichen feinen Blutgefäße des Gehirns: die Kapillaren. Die Blut-Hirn-Schranke lässt nur wenige Stoffe passieren. Welche Stoffe die Blut-Hirn-Schranke durchlässt, kontrollieren die Endothel- und Gliazellen. Das Gehirn muss ständig mit genügend Sauerstoff, Glukose und weiteren Nährstoffen versorgt werden. Deshalb ist es besonders gut durchblutet.
Blutversorgung des Gehirns
Die vordere Hirnarterie (Arteria cerebri anterior) versorgt das Gewebe hinter der Stirn und im Bereich des Scheitels. Die mittlere Hirnarterie (Arteria cerebri media) ist für die Seite und weiter innen liegende Gehirnbereiche wichtig. Die vordere und die mittlere Hirnarterie zweigen von der inneren Halsschlagader ab. Die hintere Hirnarterie (Arteria cerebri posterior) versorgt den Hinterkopf und den unteren Bereich des Gehirns sowie das Kleinhirn. Sie wird mit Blut aus den Wirbelarterien gespeist.
Bevor die drei Arterien in „ihre“ Hirnregionen ziehen und sich dort in kleinere Äste verzweigen, liegen sie nahe beieinander unterhalb des Gehirns. Hier sind sie über kleinere Blutgefäße miteinander verbunden - ähnlich wie in einem Kreisverkehr. Auch an weiter entfernten Stellen gibt es Verbindungswege zwischen den einzelnen Arterien. Das hat den Vorteil, dass Durchblutungsstörungen im Gehirn bis zu einem gewissen Grad ausgeglichen werden können: Wenn zum Beispiel ein Arterienast allmählich immer enger wird, kann über diese „Umwege“ (sogenannte Kollateralen) trotzdem Blut in den betroffenen Hirnbereich fließen.
Die feinsten Aufzweigungen (Kapillaren) der Hirnarterien geben zwar Sauerstoff und Nährstoffe aus dem Blut an die Gehirnzellen ab - für andere Stoffe sind sie jedoch weniger durchlässig als vergleichbare Blutgefäße im übrigen Körper. Fachleute nennen diese Eigenschaft „Blut-Hirn-Schranke“. Sie kann das empfindliche Gehirn zum Beispiel vor im Blut gelösten Schadstoffen schützen. „Verbrauchtes“ - also sauerstoffarmes - Blut wird über die Gehirnvenen abtransportiert. Sie leiten es in größere Blutgefäße, die sogenannten Sinusse. Die Sinuswände sind durch harte Hirnhaut verstärkt, die die Gefäße gleichzeitig aufspannen.
Hirnnerven
Dem Hirnstamm entspringen zwölf paarige Hirnnerven (I-XII). Sie haben motorische (Bewegung), sensible oder sensorische (Empfindungen) sowie vegetative (lebenswichtige Vorgänge) Funktionen.
- Nervus ophthalmicus: Empfindungen an Auge, Gesichtshaut, Nasenschleimhaut
- Nervus maxillaris: Oberkiefer und Zähne, Rachen
- Nervus mandibularis: Haut und Schleimhaut des Unterkiefers, Unterkieferzähne, Zunge, Kaumuskulatur
- Nervus abducens (VI): versorgt einen Augenmuskel
- Nervus fascialis (VII): Gesichtsmuskulatur (Mimik), Geschmack, Kopfdrüsen
- Nervus vestibulocochlearis (VIII): Hören, Gleichgewicht
- Nervus glossopharyngeus (IX): Geschmack, Schlucken (Schlundmuskeln)
- Nervus vagus (X), sog.
Alle weiteren Nerven, die das Gehirn mit Informationen versorgen beziehungsweise Informationen vom Gehirn in die verschiedenen Körperregionen transportieren, entspringen im Rückenmark.
Funktionelle Karte des Gehirns
Mit dem heutigen Wissen lässt sich eine sogenannte funktionelle Karte des Gehirns erstellen. So weiß man, dass im Stirnhirn die Funktionen von Intelligenz, Sprache (motorisches Sprachzentrum), die Persönlichkeitsmerkmale sowie die Bewegungssteuerung zu finden sind. Zellen des Schläfenlappens sind wichtig für das Gedächtnis, für Gefühle und Emotionen. Der Schläfenlappen beherbergt zudem die Hörrinde und das Sprachverständnis. Im Hirnstamm befinden sich Nervenbahnen, die das Gehirn mit dem Rückenmark verbinden. Weiterhin liegt dort das Atemzentrum. Es regelt die Atmung, das Herz-Kreislauf-System und den Blutdruck. Die Hirnanhangsdrüse (Hypophyse) schüttet Hormone oder Vorstufen von Hormonen in die Blutbahn aus. Das Kleinhirn hält Bewegungsprogramme bereit und stimmt Bewegungsabläufe ab.
Da sich die meisten Hirnleistungen einer bestimmten anatomischen Hirnregion zuordnen lassen, weisen bestimmte Ausfälle - etwa Bewegungsstörungen, Sprachstörungen oder Sehstörungen - bereits auf krankhafte Veränderungen eines bestimmten Hirnareals hin. Dabei kann es sich zum Beispiel um Durchblutungsstörungen (Schlaganfall) oder gut- oder bösartige Gewebeneubildungen handeln.
Störungen und Krankheiten des Gehirns
Das menschliche Gehirn ist ein empfindliches Organ, das anfällig für verschiedene Störungen und Krankheiten sein kann. Einige der häufigsten Störungen des Gehirns sind:
- Schlaganfall: Ein Schlaganfall tritt auf, wenn die Blutversorgung des Gehirns unterbrochen wird, was zu Schäden an den Gehirnzellen führen kann. Schlaganfälle können zu Lähmungen, Sprachproblemen und Gedächtnisverlust führen.
- Epilepsie: Epilepsie ist eine Störung des Gehirns, die zu wiederholten Anfällen führen kann. Während eines Anfalls können Betroffene Krämpfe, Bewusstseinsverlust und andere Symptome erleiden.
- Demenz: Demenz ist eine Erkrankung, die das …