Das menschliche Gehirn ist das komplexeste Organ, das die Natur je hervorgebracht hat. Es besteht aus 100 Milliarden Nervenzellen und einem Vielfachen davon an Kontaktpunkten. Eine der wichtigsten Eigenschaften des Gehirns ist seine Lernfähigkeit, die bis ins hohe Alter erhalten bleibt. Das Gehirn wird laufend umgebaut und kann sich an neue Herausforderungen und Erfahrungen anpassen.
Überblick über das Gehirn
Das menschliche Gehirn lässt sich nach verschiedenen Kriterien untergliedern. Entwicklungsgeschichtlich besteht es wie das aller Wirbeltiere aus dem End-, Zwischen-, Mittel-, Hinter- und Markhirn, auch als Tel-, Di-, Mes-, Met- und Myelencephalon bezeichnet. Anatomisch fallen besonders die Bereiche ins Auge, die als Groß-, Zwischen- und Kleinhirn bezeichnet werden, sowie der Hirnstamm.
Das menschliche Gehirn ist ein komplexes Organ, das aus Milliarden von Neuronen und Gliazellen besteht. Es wiegt durchschnittlich 1,5 Kilogramm, ist so groß wie zwei Fäuste und seine Form erinnert an das Innere einer Walnuss. Es wird in vier Hauptbereiche unterteilt: das Großhirn, das Kleinhirn, das Zwischenhirn und der Hirnstamm.
Das Großhirn (Cerebrum)
Das Großhirn, auch Cerebrum genannt, ist der größte Teil des Gehirns und macht etwa 85 % des Gesamtvolumens aus. Es besteht aus zwei Hälften, den sogenannten Hemisphären, die durch eine tiefe Fissur getrennt sind. Jede Hemisphäre besteht aus vier Lappen: dem Frontallappen (Stirnlappen), dem Parietallappen (Scheitellappen), dem Temporallappen (Schläfenlappen) und dem Okzipitallappen (Hinterhauptlappen). Durch ihre dichte Vernetzung elektrischer Signalwege ermöglichen sie komplexe Hirnfunktionen, wie Bewegung, Sinneswahrnehmung, Sprache und Gedächtnis.
Besonders auffällig ist die zum Endhirn gehörende sogenannte Großhirnrinde, der sogenannte Kortex. Sie ist im Laufe der Evolution so stark gewachsen, dass sie fast das gesamte Gehirn umgibt. Die Großhirnrinde ist Sitz vieler höherer geistiger Fähigkeiten. Einzelne Bereiche haben dabei unterschiedliche Aufgaben. So sind manche Areale darauf spezialisiert, Sprache zu verstehen, Gesichter zu erkennen oder Erinnerungen abzuspeichern. In der Regel ist aber keine Region allein für eine bestimmte Fähigkeit verantwortlich, sondern nur im Zusammenspiel mit anderen. Welche Gehirngebiete miteinander verbunden sind, untersuchen Wissenschaftler mithilfe der sogenannten Magnetresonanztomografie (MRT). Mit dieser Technik können sie die zu Fasersträngen gebündelten Fortsätze von Nervenzellen sichtbar machen, die die Areale der Großhirnrinde miteinander verbinden. Auf diese Weise haben Sprachforscher beispielsweise eine für das Sprachvermögen zentrale Gehirnregion entdeckt: den sogenannten Fasciculus Articuatus. Ohne dieses Nervenfaserbündel können Kleinkinder keine komplexen Sätze bilden und verstehen. Dies gelingt erst, wenn diese Verbindung genug entwickelt ist.
Lesen Sie auch: Gleichgewicht und das Kleinhirn
Das Kleinhirn (Cerebellum)
Das Kleinhirn befindet sich unterhalb des Großhirns und ist für die Koordination von Bewegungen und die Aufrechterhaltung des Gleichgewichts zuständig. Neue Studien zeigen, dass es außerdem an Lernprozessen und weiteren kognitiven Prozessen beteiligt ist. Es hat eine charakteristische, feine Oberflächenstruktur, die aus vielen kleinen Furchen und Windungen besteht.
Ein Großteil der ZNS-Tumoren im Kindes- und Jugendalter, zum Beispiel Astrozytome und Medulloblastome, wachsen im Kleinhirn. Das Kleinhirn liegt in der hinteren Schädelgrube. Seine obere Fläche wird vom Großhirn überdeckt, von dem es durch das Kleinhirnzelt (Tentorium cerebelli) getrennt ist. Das Kleinhirn besteht aus den beiden Kleinhirnhälften (Kleinhirnhemisphären) und dem Kleinhirnwurm (Vermis cerebelli). Es ist beidseits durch die Kleinhirnstiele mit dem Hirnstamm verbunden. Im Längsschnitt erinnern die Kleinhirnstrukturen an Verästelungen eines Laubbaums. Sie werden deshalb auch Lebensbaum genannt. Dabei bildet die graue Substanz die aus drei Nervenzellkernschichten bestehende Kleinhirnrinde (Körnerschicht, Purkinje-Schicht, Molekularschicht). Tief im Mark liegen wiederum Gruppen von Nervenzellkernen, die Kleinhirnkerne. Diese sind selbständige Schaltzentren, die Impulse erhalten und weitergeben. Das Kleinhirn ist das Kontrollorgan für das Zusammenwirken von Muskelbewegungen (Koordination), für die Feinabstimmung von Bewegungsabläufen und für die Regulierung der Muskelspannung.
Von oben und unten betrachtet erscheinen die beiden Kleinhirnhemisphären entfernt wie wulstige Flügel eines Schmetterlings, getrennt voneinander durch den Wurm, auch Vermis genannt. Bei Säugetieren und insbesondere beim Menschen sind die Kleinhirnhemisphären im Vergleich zu niederen Wirbeltieren besonders ausgeprägt: Im Laufe der Evolution von den Reptilien bis zu den Primaten haben sie immer mehr an Bedeutung gewonnen. Nach hinten unten, zum Austritt des Rückenmarks aus dem Schädel hin, wölben sich die beiden Kleinhirntonsillen hervor. Die Einklemmung der Tonsillen an dieser Austrittsöffnung kann zu schweren neurologischen Symptomen führen.
Wie auch das Großhirn unterteilen sich die Kleinhirnhemisphären in Lappen, lateinisch Lobi genannt, die durch größere Furchen voneinander getrennt sind. Lehrbücher listen die lateinischen Namen zahlreicher Furchen, Lappen und Läppchen auf, die nach ihrer Lage oder Form benannt sind - beispielsweise „hintere seitliche Furche“ oder „halbmondförmiges Läppchen“ - oder einfach durchnummeriert wurden. Allerdings unterliegt dieser Unterteilung meist keine funktionelle Ordnung. Funktionell wichtig jedoch ist die auffällige „erste Furche“, die Kleinhirnhemisphären und Wurm in die entwicklungsgeschichtlich unterschiedlich alten Vorder- und Hinterlappen unterteilt.
Eine übliche, allerdings relativ grobe, funktionelle Einteilung des Kleinhirns hält sich nur teilweise an anatomisch definierte Lappengrenzen. Der größte Teil der Kleinhirnhemisphären zählt zum Neukleinhirn oder Pontocerebellum, das entwicklungsgeschichtlich zuletzt ausgebildet wurde. Es steht in enger Beziehung zur Großhirnrinde und koordiniert zielgerichtete präzise Bewegungen wie das Greifen eines Glases. Der Vorderlappen und Abschnitte der Kleinhirnhemisphären, die jeweils direkt an den Wurm grenzen, sind hingegen Teil des Altkleinhirns oder Spinocerebellums: Es kontrolliert über den Muskeltonus unwillkürliche Bewegungen - zum Beispiel beim Gehen.
Lesen Sie auch: Prognose von Kleinhirnmetastasen – Ein detaillierter Einblick
Das Kleinhirn ist eine etwa faustgroße sphärische Masse, die in der hinteren Schädelgrube liegt und vom Kleinhirnzelt dorsal abgedeckt wird. Es bedeckt die Rautengrube und ist mit Medulla oblongata und Pons durch 3 Arme (Pedunculi) verbunden. Das Kleinhirn besteht aus 2 Hemisphären und einem mittleren Teil, dem Wurm (Vermis). Zahlreiche enge, querverlaufende Furchen teilen die Oberfläche in schmale, blattförmige Windungen. Diese Furchen überqueren die Mittellinie (im Gegensatz zum Großhirn) von einer zur anderen Hemisphäre ohne Unterbrechung. Im Sagittal-Schnittbild erinnert das Kleinhirn an eine baumartige Struktur. Die Windungen des Kleinhirns werden daher nicht als Gyri, sondern als Folia (Blätter) bezeichnet. Gruppen von Folia werden als Läppchen (Lobuli, L I - X) und diese wiederum zu drei Lappen (Lobi) zusammengefaßt. Der erste Lobus (L. I-V) wird als Lobus anterior bezeichnet und ist durch die Fissura prima vom 2. Lobus (L. posterior, L. VI-IX) getrennt. Der zehnte Lobulus wird als Lobus flocculo-nodularis bezeichnet, wobei der Nodulus in der Mittellinie gelegen ist während die "Flocken" beiderseits lateral liegen.
Das Zwischenhirn (Diencephalon)
Das Zwischenhirn liegt zwischen dem Großhirn und dem Hirnstamm. Seine größte Struktur, der Thalamus, filtert eingehende Signale von unseren Sinnesorganen und leitet sie dann an das Großhirn weiter. Der kleinere Hypothalamus liegt darunter und steuert durch Hormone primitive Funktionen wie unsere Körpertemperatur, Sexualverhalten, Hunger, Durst und Schlaf.
Der Hirnstamm (Truncus cerebri)
Der Hirnstamm befindet sich unterhalb des Zwischenhirns und ist der Übergangsbereich zwischen dem Gehirn und dem Rückenmark. Er umfasst eine Vielzahl von Kerngebieten, die für lebenswichtige Funktionen wie Atmung, Herzfrequenz und Blutdruckregulation verantwortlich sind.
Gehirnwindungen und Furchen (Gyri und Sulci)
Die Oberfläche des Großhirns besteht aus zahlreichen Windungen und Furchen, die auch als Gyri und Sulci bezeichnet werden. Diese komplexe Struktur erhöht die Oberfläche des Gehirns und ermöglicht es, eine große Anzahl von Neuronen auf kleinem Raum unterzubringen und somit die Leistungsfähigkeit des Gehirns zu erhöhen.
Die Windungen und Furchen des Gehirns sind nicht gleichmäßig verteilt. Die größten Furchen werden als Längs-, Quer- und Seitenfurchen bezeichnet und als Trennlinien genutzt, um die vier Hirnlappen anatomisch voneinander zu unterscheiden.
Lesen Sie auch: Kleinhirninfarkt: Was Sie über postischämische Defekte wissen sollten
Die Windungen und Furchen des Gehirns variieren auch zwischen verschiedenen Arten von Lebewesen. Zum Beispiel haben einige Tiere, wie Wale und Delfine, besonders komplexe Gehirne mit vielen Windungen und Furchen, was Forscher:innen als Hinweis auf ihre hohe kognitive Leistungsfähigkeit deuten. Denn die Furchen vergrößern die Oberfläche der Hirnrinde, genannt Kortex, und ermöglichen so komplexere neuronale Verschaltung.
Die Anzahl und das Muster von Windungen und Furchen im Gehirn können auch durch Umweltfaktoren beeinflusst werden. So weisen beispielsweise eineiige Zwillinge nicht dieselben Strukturen auf der Hirnoberfläche auf. Insgesamt sind die Windungen und Furchen des Gehirns ein faszinierendes Beispiel für die komplexe Struktur des menschlichen Körpers und deren Anpassung an spezifische Funktionen und Umweltbedingungen.
Kleinhirnwindungen und -furchen (Foliae und Fissurae)
Kleinhirn und Großhirn nutzen beide das Prinzip der Oberflächenvergrößerung für sich: Ihre Rinde ist nicht glatt, sondern stark gefaltet, mit zahlreichen Erhebungen - den Windungen - und tiefen Tälern - den Furchen. Die lateinischen Namen für diese Erscheinungen sind allerdings unterschiedlich: Beim Großhirn spricht man von Gyri und Sulci, beim Kleinhirn von Foliae und Fissurae. Und es gibt weitere Unterschiede: Die vielen Furchen des Kleinhirns verlaufen annähernd parallel zueinander, zudem ist seine Rinde sehr viel feiner zerklüftet, die Windungen sind schmaler. Den Wettbewerb um die effektivste Oberflächenvergrößerung gewinnt das Kleinhirn damit ganz klar für sich: Im Vergleich zum Großhirn hat es zwar nur 10 Prozent von dessen Gewicht, erreicht aber 75 Prozent von dessen Oberfläche.
Zahlreiche enge, querverlaufende Furchen teilen die Oberfläche des Kleinhirns in schmale, blattförmige Windungen. Diese Furchen überqueren die Mittellinie (im Gegensatz zum Großhirn) von einer zur anderen Hemisphäre ohne Unterbrechung. Im Sagittal-Schnittbild erinnert das Kleinhirn an eine baumartige Struktur. Die Windungen des Kleinhirns werden daher nicht als Gyri, sondern als Folia (Blätter) bezeichnet. Gruppen von Folia werden als Läppchen (Lobuli, L I - X) und diese wiederum zu drei Lappen (Lobi) zusammengefaßt. Der erste Lobus (L. I-V) wird als Lobus anterior bezeichnet und ist durch die Fissura prima vom 2. Lobus (L. posterior, L. VI-IX) getrennt. Der zehnte Lobulus wird als Lobus flocculo-nodularis bezeichnet, wobei der Nodulus in der Mittellinie gelegen ist während die "Flocken" beiderseits lateral liegen.
Die Kleinhirnrinde folgt allen Windungen und ist - im Gegensatz zur Großhirnrinde - überall fast gleichförmig aufgebaut. Sie besteht aus drei Schichten, der äußeren Molekularschicht, der mittleren Purkinje-Zellschicht und der inneren Körnerzellschicht.
Rechte und linke Hemisphäre
Das Gehirn lässt sich in eine rechte und eine linke Gehirnhälfte unterteilen. Diese beiden Hälften sind allerdings über einen dicken Strang Nervenfasern, dem corpus callosum, verbunden und arbeiten zusammen.
Jede Hemisphäre besteht dabei aus einer Großhirn-, einer Zwischenhirn- und einer Kleinhirnhälfte, die auf Funktionen spezialisiert sind, aber gleichzeitig kontinuierlich miteinander kommunizieren. Das Großhirn beherbergt den motorischen Kortex, der Signale an die Muskeln sendet und Bewegungen steuert. Hierbei übernimmt jeweils eine Seite des Gehirns eine Hälfte des Körpers. Interessant ist, dass jeweils die entgegengesetzte Seite gesteuert wird. Das heißt, die rechte Gehirnhälfte steuert die linke Seite des Körpers.
Diese Organisation führt bei einem Schlaganfall dazu, dass es bei einer Schädigung des rechten motorischen Kortex’ zu einer Lähmung in der linken Körperhälfte kommt.
Aufbau des Nervensystems
Das Nervensystem des menschlichen Körpers besteht aus Neuronen, Gliazellen und Synapsen.
Neuronen sind spezialisierte Zellen, die Signale in Form von elektrischen Impulsen empfangen, verarbeiten und weiterleiten. Sie bestehen aus einem Zellkörper, Dendriten und einem Axon. Dendriten empfangen Signale von anderen Neuronen und leiten sie an den Zellkörper weiter. Das Axon sendet Signale an andere Neuronen oder an Muskeln oder Drüsen.
Gliazellen sind Zellen, die das Gehirn und das Rückenmark umgeben und unterstützen. Sie liefern den Neuronen Nährstoffe und Sauerstoff, entfernen Abfallprodukte und helfen, die Neuronen zu schützen. Gliazellen tragen auch dazu bei, dass sich Neuronen bei Verletzungen wieder regenerieren.
Synapsen sind die Verbindungen zwischen Neuronen. Sie ermöglichen es Neuronen, Signale zu senden und zu empfangen. Synapsen funktionieren durch die Freisetzung von Neurotransmittern aus dem “Senderneuron”, die an Rezeptoren auf einem “Empfängerneuron” binden. Dieser Prozess erzeugt ein elektrisches Signal im Empfängerneuron, das in seinem Zellkern mit den Signalen von anderen Synapsen integriert wird. Synapsen sind der Ort, an dem Informationen im Gehirn verarbeitet werden und Lernen und Gedächtnisbildung stattfinden.
Insgesamt arbeiten Neuronen und Gliazellen zusammen, um ein komplexes Netzwerk zu bilden, das die Grundlage für die Informationsverarbeitung im Gehirn bildet.
Dimensionen des Gehirns
Die Dimensionen des Gehirns sind beeindruckend. Zwar macht das Gehirn nur zwei bis drei Prozent der Gesamtmasse unseres Körpers aus, verbraucht allerdings 20% seiner Energie.
Damit versorgt unser Körper etwa 86 Milliarden Neuronen sowie die gleiche Anzahl an Gliazellen. Der Speicherplatz des Gehirns wird auf ein Petabyte geschätzt, das sind 1.000.000 Gigabyte.
Dass wir nicht unser gesamtes Gehirn nutzen, ist übrigens ein Mythos. Zwar sind nicht alle Teile des Gehirns gleichzeitig aktiv, trotzdem hat jeder Bereich seine Spezialisierung und kommt auch regelmäßig zum Einsatz.
Steuerung des Körpers durch das Gehirn
Von einfachen Handgriffen bis zu komplexen Tanzschritten - das Gehirn steuert, meist automatisch, alle unsere Bewegungen. Dabei arbeiten die verschiedenen Bereiche des Gehirns nahtlos zusammen.
Auch das Rückenmark spielt hierbei eine Schlüsselrolle. Es fungiert als Schnittstelle zwischen dem Gehirn und unserem Körper, leitet Signale an die Muskeln und ist für einfache Reflexe verantwortlich.
Wie das Rückenmark und das Gehirn zusammenarbeiten
Das Rückenmark und das Gehirn arbeiten eng zusammen, um das reibungslose Funktionieren des Körpers zu gewährleisten. Das Rückenmark ist ein Teil des zentralen Nervensystems und dient als Verbindung zwischen dem Gehirn und den peripheren Nerven des Körpers. Es verläuft entlang der Wirbelsäule und besteht aus Nervenfasern, die Signale vom Gehirn zu den Muskeln und Drüsen des Körpers übertragen.
Das Gehirn ist das Kontrollzentrum des Körpers und sendet ständig Signale an das Rückenmark, um Körperfunktionen wie Atmung, Herzschlag, Verdauung und Bewegung zu regulieren. Diese Signale werden entlang des Rückenmarks weitergeleitet und führen zur Aktivierung der entsprechenden Muskeln oder Drüsen.
Zusätzlich werden über das Rückenmark auch Signale an das Gehirn gesendet, um Informationen über Schmerzen, Berührungen und andere sensorische Reize zu übermitteln. Dieses Zusammenspiel zwischen Rückenmark und Gehirn ermöglicht es dem Körper, auf seine Umgebung zu reagieren und seine Funktionen zu regulieren.
Insgesamt ist die Zusammenarbeit von Rückenmark und Gehirn von großer Bedeutung für das reibungslose Funktionieren des Körpers.
Gehirn und Körper stehen im ständigen Austausch
Die Verbindung zwischen Gehirn und Körper ist von entscheidender Bedeutung für unser alltägliches Leben. Das Gehirn ist das Kontrollzentrum des Körpers, welches alle Körperfunktionen steuert, einschließlich der Bewegungen, der Sinneswahrnehmung und der Organtätigkeit. Es kommuniziert mit den Sinnesorganen, den Skelettmuskeln, den Drüsen und der glatten, von uns nicht bewusst steuerbaren Muskulatur, wie von Blutgefäßen, der Lunge und Verdauungsorgane. Diese Kommunikation läuft fast ausschließlich über die Nervenbahnen im Rückenmark.
Kognitive Funktionen und Plastizität im Gehirn
Das menschliche Gehirn ist nicht nur für die Steuerung des Körpers verantwortlich, sondern auch für eine Vielzahl von kognitiven Funktionen wie Lernen, Gedächtnis, Sprache und Entscheidungsfindung. Diese kognitiven Funktionen beruhen auf komplexen neuronalen Netzwerken, die sich im Laufe des Lebens entwickeln und verändern.
Die Plastizität des Gehirns
Die Plastizität des Gehirns ist eine faszinierende Eigenschaft, die es dem Gehirn ermöglicht, sich an neue Herausforderungen, Veränderungen und Erfahrungen anzupassen. Das Gehirn kann durch die Bildung neuer Verbindungen zwischen Neuronen und die Modifikation bestehender Verbindungen seine Funktionen verändern und verbessern. Dieser Prozess der Anpassungsfähigkeit findet während der gesamten Lebensspanne statt und wird durch Faktoren wie Lernen, Erfahrung, körperliche Aktivität und Umgebung beeinflusst.
Beispielsweise kann sich das Gehirn nach einem Schlaganfall oder einer Verletzung aufgrund von neuroplastischen Mechanismen regenerieren. Wenn ein Teil des Gehirns beschädigt wird, können andere Teile des Gehirns die Funktionen dieses beschädigten Bereichs übernehmen. Darüber hinaus kann das Gehirn auch in der Lage sein, neue Verbindungen zwischen Neuronen zu bilden, um verlorene Funktionen wiederzugewinnen.
Die Plastizität des Gehirns spielt auch eine wichtige Rolle beim Lernen und Gedächtnis. Wenn wir etwas lernen, werden neue neuronale Verbindungen gebildet und bestehende Verbindungen verstärkt. Durch diese Veränderungen kann das Gehirn Informationen schneller und effektiver verarbeiten, wodurch wir unsere kognitiven Fähigkeiten verbessern.
Darüber hinaus kann die Plastizität des Gehirns auch durch körperliche Aktivität und Umgebung beeinflusst werden. Wenn wir unser Gehirn regelmäßig durch kognitive Aktivitäten oder körperliches Training herausfordern, kann dies die Neubildung von neuronalen Verbindungen und die Verbesserung kognitiver Fähigkeiten wie Gedächtnis, Aufmerksamkeit und Problemlösung fördern.
Insgesamt ist die Plastizität des Gehirns ein faszinierendes Phänomen, das unser Verständnis des menschlichen Gehirns und seiner Fähigkeit zur Anpassungsfähigkeit erweitert hat. Dies hat auch wichtige Implikationen für die Behandlung von Gehirnerkrankungen und die Verbesserung unserer kognitiven Fähigkeiten und Lebensqualität.
Das Gedächtnis
Ein weiterer wichtiger Aspekt der kognitiven Funktionen des Gehirns ist das Gedächtnis. Das Gehirn ist in der Lage, Erinnerungen zu speichern und abzurufen, indem es verschiedene Formen von Gedächtnissen verwendet: Das Arbeitsgedächtnis, Kurzzeitgedächtnis und Langzeitgedächtnis. Der Hippocampus spielt eine wichtige Rolle bei der Bildung des Langzeitgedächtnisses, indem er Informationen aus dem Kurzzeitgedächtnis konsolidiert und sie in der Großhirnrinde speichert.
Die Sprache
Das Gehirn ist auch entscheidend für die Sprachfunktionen des Menschen, einschließlich der Fähigkeit, Sprache zu verstehen, zu sprechen und zu lesen. Die Sprachfunktionen des Gehirns sind hauptsächlich in der linken Hemisphäre lokalisiert und umfassen verschiedene Regionen, darunter das Broca-Areal und das Wernicke-Areal.
Das Broca-Areal ist für die Sprachproduktion zuständig, während das Wernicke-Areal das Verständnis von Sprache ermöglicht. Das Broca-Areal liegt im Stirnlappen, während das Wernicke-Areal im Schläfenlappen liegt. Sie sind durch eine dicke Nervenfaser, den fasciculus arcuatus, verbunden. Neue Forschungsergebnisse legen nahe, dass dieses Nervenbündel nur im menschlichen Gehirn so tief in den Schläfenlappen reicht. Bei anderen Säugetieren, unter anderem unserem nächsten Verwandten, dem Schimpansen, ist der fasciculus arcuatus kürzer und kann so keine Verbindung zwischen den beiden Arealen herstellen. Dies könnte erklären, wieso der Mensch als einziges Lebewesen über Sprache kommuniziert.
Störungen und Krankheiten des Gehirns
Das menschliche Gehirn ist ein empfindliches Organ, das anfällig für verschiedene Störungen und Krankheiten sein kann. Einige der häufigsten Störungen des Gehirns sind:
- Schlaganfall: Ein Schlaganfall tritt auf, wenn die Blutversorgung des Gehirns unterbrochen wird, was zu Schäden an den Gehirnzellen führen kann. Schlaganfälle können zu Lähmungen, Sprachproblemen und Gedächtnisverlust führen.
- Epilepsie: Epilepsie ist eine Störung des Gehirns, die zu wiederholten Anfällen führen kann. Während eines Anfalls können Betroffene Krämpfe, Bewusstseinsverlust und andere Symptome erleiden.
- Demenz: Demenz ist eine Erkrankung, die das Gedächtnis und die kognitiven Fähigkeiten beeinträchtigt. Alzheimer-Krankheit ist die häufigste Ursache für Demenz.