Die Kontaktstelle zwischen zwei Nervenzellen: Definition und Funktion der Synapse

Damit der Mensch fühlen, handeln und denken kann, müssen die rund 86 Milliarden Neurone im Gehirn ständig miteinander kommunizieren. Diese Kommunikation erfolgt über spezialisierte Kontaktstellen, die als Synapsen bezeichnet werden. Die Synapse ist somit die Verbindungsstelle zwischen zwei Nervenzellen (Neuronen) oder zwischen einer Nervenzelle und einer anderen Zelle, wie beispielsweise einer Muskel- oder Drüsenzelle.

Neuronale Kommunikation: Elektrische und Chemische Signale

Innerhalb eines Neurons wird ein einkommendes Signal elektrisch weitergeleitet. Zwischen zwei Neuronen werden Signale in der Regel chemisch über Neurotransmitter übertragen. Die elektrische Weiterleitung funktioniert nach dem Alles-oder-Nichts-Prinzip: Erst wenn die Stärke des Signals einen Schwellenwert übersteigt, wird im Axon das Aktionspotenzial generiert.

Das Aktionspotenzial: Der elektrische Impuls

Wird das Neuron entsprechend gereizt, etwa durch eine andere Nervenzelle oder einen sensorischen Input, entsteht an der Membran des Axons eine veränderte elektrische Spannung, die sich bis zu den Synapsen fortpflanzt. Man spricht vom Aktionspotenzial, das beim Menschen etwa eine Millisekunde andauert. Der Wechsel vom Ruhe- zum Aktionspotenzial erfolgt, indem bestimmte Ionen über die Zellmembran des Axons ein- und ausströmen. Im Ruhezustand sind mehr Kalium-Ionen im Inneren des Axons, während sich außerhalb mehr Natrium-Ionen befinden.

Synapsen: Schaltstellen der Informationsübertragung

Die Synapsen sind die zentralen Schaltstellen der Informationsübertragung im Gehirn. Jede Nervenzelle hat bis zu 10.000 davon, im Extremfall sogar mehr als 100.000. Weil aber die synaptischen Endigungen der Senderzelle die Empfängerzelle nicht direkt berühren, bleibt ein winziger Spalt von 20 bis 50 Nanometern zwischen beiden. Um diese Barriere zu überwinden, nutzen die meisten Synapsen chemische Botenstoffe - wenngleich es auch einige gibt, die rein elektrisch arbeiten.

Aufbau einer Synapse

Eine typische Synapse besteht aus drei Hauptteilen:

Lesen Sie auch: Die Rolle der Synapsen im Nervensystem

  1. Präsynapse: Sie bildet das Endknöpfchen des sendenden Neurons. Hier werden die sogenannten Neurotransmitter in kleinen Bläschen (Vesikeln) gespeichert. Das Aktionspotenzial erreicht schließlich das Ende des Axons, das synaptische Endknöpfchen.
  2. Synaptischer Spalt: Der winzige Zwischenraum (etwa 20-50 Nanometer breit) trennt das Endknöpfchen von der nächsten Zelle. Im synaptischen Spalt werden bei chemischen Synapsen die Neurotransmitter aus der Präsynapse ausgeschüttet. Sie diffundieren zu den Rezeptoren der Postsynapse und übermitteln so das Signal.
  3. Postsynapse: Die postsynaptische Membran gehört zur empfangenden Zelle. Am postsynaptischen Neuron gibt es kompetente Annahmestellen für die Information: die Rezeptormoleküle. Jeder Rezeptor ist auf einen bestimmten Neurotransmitter spezialisiert wie ein Schlüssel und ein passendes Schloss.

Neben diesen Hauptbestandteilen existiert noch eine Vielzahl regulierender Proteine, Enzyme und Transportmechanismen, die für Präzision und Selektivität in der Signalübertragung sorgen.

Funktionsweise der Synapse

Die Synapse ist keine starre Verbindung wie eine Kabelverbindung, sondern ein hochdynamischer, spezialisierter Bereich, der gezielt Reize weiterleitet, filtert, verstärkt oder hemmt. Ganz gleich, ob beim Lernen, Erinnern, oder beim Steuern eines Muskels - ohne Synapsen gäbe es keine Kommunikation im Nervensystem.

Chemische Synapsen

Bei chemischen Synapsen fusionieren nach der Ankunft eines Aktionspotenzials die so genannten synaptischen Vesikel - etwa 40 Nanometer kleine Bläschen - mit der Zellmembran und schütten Botenstoffe in den Spalt aus. Diese so genannten Neurotransmitter können den Spalt überqueren, der die präsynaptische von der postsynaptischen Zelle trennt. Am postsynaptischen Neuron gibt es kompetente Annahmestellen für die Information: die Rezeptormoleküle. Jeder Rezeptor ist auf einen bestimmten Neurotransmitter spezialisiert wie ein Schlüssel und ein passendes Schloss. Die Neurotransmitter erzeugen in der Empfängerzelle das so genannte postsynaptische Potenzial, eine Veränderung im Membranpotenzial des Neurons: Das chemische Signal wird also wieder in ein elektrisches zurückübersetzt.

Neurotransmitter: Botenmoleküle im Gehirn

Die Botschaft und Dringlichkeit eines Signals zeigt sich an der Anzahl und der Frequenz der Aktionspotenziale. Besonders starke Reize lösen besonders viele und dicht aufeinanderfolgende Aktionspotenziale aus. Pro Sekunde kann eine Nervenzelle bis zu 500mal feuern. Die Information über die Stärke einer Erregung ist in der Anzahl der Aktionspotenziale und ihrem zeitlichen Abstand zueinander, der Frequenz, codiert.

Elektrische Synapsen

Neben chemischen Synapsen wurden auch elektrische Synapsen entdeckt. Bei dieser elektrischen Kommunikation zweier Zellen spielen so genannte ‚gap junctions‘ eine Rolle - aus Proteinen bestehende Kanäle, die die Zellflüssigkeiten von zwei Neuronen verbinden. So können elektrische Signale Ionenströme durch diese Kanäle ohne Umwege direkt von Zelle zu Zelle weitergeben. Mit gap junctions kann man viele Zellen über eine größere Entfernung miteinander synchronisieren. Wenn eine Zelle ein Signal erhält, dann geht das gleich auf die anderen Zellen über, da sie wie Stecker und Steckdose miteinander verbunden sind. Das mobilisiert in kürzester Zeit größere Nervenzellgruppen. Obwohl das sehr effizient klingt, kommt diese rein elektrische Form der Weiterleitung eher bei einfacher entwickelten Tieren wie Krebsen vor, wo sie zum Beispiel schnelle Fluchtreaktionen steuern.

Lesen Sie auch: Behandlungsmöglichkeiten bei eingeklemmtem Nerv

Arten von Synapsen

Synapse ist nicht gleich Synapse: Unterschiedliche Anforderungen im Nervensystem haben zur Ausbildung verschiedener Synapsentypen geführt.

  1. Chemische Synapse: Bei der chemischen Synapse erfolgt die Signalübertragung indirekt mittels Neurotransmittern. Sie ist im menschlichen Nervensystem am häufigsten und ermöglicht komplexe Regulation, Verstärkung und Hemmung.
  2. Elektrische Synapse: Diese seltenere Form findet man z.B. im Herzmuskel oder bei gewissen Reflexbahnen. Hier übertragen spezielle Kanäle (Gap Junctions) elektrisch geladene Teilchen (Ionen) direkt von Zelle zu Zelle. Der Signalfluss ist dabei extrem schnell, aber weniger regulierbar als bei der chemischen Synapse.

Nach Art des Neurotransmitters: z. B. Glutamat, GABA, Acetylcholin.

Erregende vs. hemmende Synapsen

Erregende Synapsen sorgen für eine Depolarisation (Erregung) der Zielzelle - typisches Beispiel: Glutamat wirkt stimulierend im Gehirn. Hemmende Synapsen dagegen hyperpolarisieren ihre Zielzelle, bremsen also den Signalfluss - wie GABA oder Glycin.

Bedeutung der Synapsen für das Leben

Synapsen bilden das Fundament für alle Funktionen des Nervensystems: Sie verknüpfen Milliarden von Nervenzellen zu Netzwerken und ermöglichen Wahrnehmung, Bewegung, Denken und Lernen. Sie bestimmen, wie Informationen im Gehirn fließen und verarbeitet werden.

Synaptische Plastizität: Die Grundlage für Lernen und Gedächtnis

Synaptische Plastizität ist die Fähigkeit von Synapsen, ihre Stärke und Effizienz zu verändern - je nachdem, wie oft und wie stark sie benutzt werden. Sie ermöglicht es dem Gehirn, auf Erfahrungen zu reagieren und sich anzupassen. Eine berühmte Form ist die Langzeitpotenzierung (LTP): Werden Synapsen über längere Zeit wiederholt aktiviert, werden sie besonders leistungsfähig. Diese Anpassungsfähigkeit ist die physikalische Grundlage für nahezu alle Lern- und Anpassungsprozesse im Nervensystem - von kindlicher Sprachentwicklung über das Erlernen eines Musikinstruments bis hin zur Regeneration nach einer Gehirnverletzung. Gehirnforscherinnen und -forscher sprechen deshalb oft vom "Gedächtnis der Synapsen".

Lesen Sie auch: Verwirrung im Alter: Delir oder Demenz?

Beispiel 1: Übst du Klavier, verstärken sich relevante Synapsen im Motorkortex.

Beispiel 2: Hast du je die Hand blitzschnell zurückgezogen, nachdem du etwas Heißes berührt hast?

Beispiel 3: Unter Adrenalineinfluss - etwa bei einer Prüfung - werden Synapsen kurzfristig besonders "aufmerksam" und speichern Informationen effizienter.

Krankheiten und Synapsen

Nicht immer funktioniert die synaptische Übertragung reibungslos. Störungen der synaptischen Funktion können zu verschiedenen Synapsen-Krankheiten führen, wie z.B.:

  • Myasthenia gravis: Autoimmunerkrankung, die durch eine Produktion von Autoantikörpern gegen Acetylcholinrezeptoren auf der postsynaptischen Membran gekennzeichnet ist.
  • Parkinson-Krankheit: Neurodegenerative Erkrankung, bei der die Produktion von Dopamin durch Zerstörung der produzierenden Zellen in der Substantia nigra vermindert ist.
  • Autismus-Spektrum-Störung: Neurologische Entwicklungsstörung, die durch reduzierte soziale Fähigkeiten, eingeschränkte Interessen und soziale Interaktionen sowie sich wiederholende und stereotype Verhaltensweisen gekennzeichnet ist.
  • Schizophrenie: Schwere chronische psychische Störung. Schizophrenie ist gekennzeichnet durch das Vorhandensein psychotischer Symptome, desorganisierten Sprechens oder Verhaltens, Affektverflachung, Avolition, Anhedonie, verminderte Aufmerksamkeitsfähigkeit und Alogie.

Auch Synapsengifte können die Reizweiterleitung an chemischen Synapsen stören oder verhindern. Sie hemmen dann die Informationsübertragung an Synapsen an unterschiedlichen Stellen. Nikotin aktiviert postsynaptische Rezeptoren, die auch durch Acetylcholin aktiviert werden. Atropin dagegen hemmt Acetylcholin-Rezeptoren, indem es die Bindung von Acetylcholin verhindert.

tags: #Kontaktstelle #zwischen #2 #Nervenzellen #Definition