Das Gehirn: Grundlagen der Biologie und Funktionsweise

Das Gehirn, oft als die komplexeste Struktur im uns bekannten Universum betrachtet, ist die Steuerzentrale unseres Körpers. Es ermöglicht uns zu denken, zu fühlen, zu handeln und uns an Erfahrungen zu erinnern. Die kleinste Bewegung basiert auf der Aktivität zahlreicher Strukturen und erfordert eine feine Balance gegenseitiger Hemmung und Erregung. Gedächtnis ist eine kaum vermeidbare Folge erregter sensorischer Zellen, und unser Geist… Wie komplex muss ein Gebilde sein, um uns als Individuen zu beherbergen? Dieser Artikel beleuchtet die Grundlagen der Gehirnbiologie, seine Struktur, Funktionen und wie es uns zu dem macht, was wir sind.

Einführung in die Anatomie des Gehirns

Die Anatomie des Gehirns zu beschreiben ist eine komplexe Aufgabe. Das Gehirn (auch Cerebrum oder Encephalon genannt) befindet sich im Kopf, geschützt durch die knöcherne Schädeldecke, und geht im Bereich des Hinterkopfs in das Rückenmark über. Es besteht aus verschiedenen Regionen und Strukturen, die alle zusammenarbeiten, um lebenswichtige Aufgaben zu erfüllen, wie die Steuerung von Atmung und Kreislauf. Über hin- und wegführende Nervenbahnen sind sie mit unserem gesamten Körper verbunden. Die Länge aller Nervenbahnen unseres Gehirns zusammen beträgt ungefähr 5,8 Mio. Kilometer.

Das Nervengewebe des Gehirns ist von drei verschiedenen Hirnhäuten (Meningen) geschützt, bevor es vom Schädel umgeben wird. Sie setzen sich außerhalb unseres Gehirns in den Rückenmarkshäuten fort. Genau wie das Rückenmark, besteht das Gehirn aus zwei verschiedenen Gewebeanteilen:

  • Graue Substanz: Enthält alle Zellkörper der Nervenzellen. Bei Groß- und Kleinhirn bildet die graue Masse die umhüllende Rinde. Außerdem befindet sie sich in der weißen Substanz.
  • Weiße Substanz: Enthält die Nervenfasern, also die Axone der Nervenzellen.

Beim Gehirn befinden sich die Nervenzellkörper also vor allem in den äußeren Bereichen und die Axone liegen im inneren Teil des Gehirns.

Die Hauptstrukturen des Gehirns

Das Gehirn lässt sich grob in folgende Hauptstrukturen unterteilen:

Lesen Sie auch: Anwendung des Konzepts: Lesen ist Denken

  • Großhirn (Cerebrum): Das größte Gehirnareal, dessen Oberfläche durch viele Gehirnwindungen (Gyri), die durch Gräben (Sulci) voneinander getrennt sind, stark vergrößert ist. Die Großhirnrinde bildet die Oberfläche des Großhirns. Darauf befinden sich 52 Rindenfelder, die nach verschiedenen Funktionen eingeteilt werden. Das sind Hirnareale mit verschiedenen Aufgaben, in denen die Nervenbahnen enden oder entspringen.
  • Zwischenhirn (Diencephalon): Liegt zwischen Großhirn und Mittelhirn. Es besteht aus Thalamus und Hypothalamus.
    • Thalamus: Kannst du dir als „Tor zum Bewusstsein“ vorstellen. Seine Funktion ist die Sammlung fast aller Sinneswahrnehmungen und die Weiterleitung an das primär sensorische Rindenfeld im Scheitellappen des Großhirns.
    • Hypothalamus: Kontrolliert den Hormonhaushalt. Damit stellt er sozusagen die Verbindung zwischen Hormon- und Nervensystem dar. Er steuert wichtige Funktionen, wie Schlaf-Wach-Rhythmus, Körpertemperatur und Sexualverhalten. Der Hypothalamus ist verbunden mit der Hypophyse. Sie ist die Hormondrüse am Gehirn.
  • Kleinhirn (Cerebellum): Liegt unterhalb des Großhirns und hinter dem Hirnstamm. Genau wie das Großhirn, lässt sich auch das Kleinhirn in zwei Hemisphären einteilen. Zwischen den beiden Hälften liegt der Kleinhirnwurm. Das Kleinhirn ist vor allem für das Gleichgewicht und die Steuerung von erlernten Bewegungsabläufen verantwortlich.
  • Hirnstamm: Bildet den untersten Teil des Gehirns und ist für die Verschaltung von Sinneseindrücken verantwortlich. Im Nachhirn überkreuzen sich viele Nervenbahnen unserer beiden Körperhälften.

Wie funktioniert das Gehirn?

Das Gehirn übernimmt alle lebenswichtigen Funktionen unseres Körpers, wie die Atmung, den Kreislauf oder das Schlaf-Wach-Verhalten. Dazu nimmt das Gehirn alle Informationen von den Organen und aus der Umwelt auf, speichert und verarbeitet sie. Auch komplexe Funktionen wie Denken, Lernen, Emotionen oder Handlungsabläufe werden dort gesteuert. Das Gehirn ist also sehr komplex und übernimmt viele unterschiedliche Aufgaben. Daher gibt es viele verschiedene Gehirnregionen mit speziellen Aufgaben, die zusammen arbeiten müssen. - miteinander verbunden. Die Synapsen können dabei nutzungsabhängig optimiert und verändert werden. Der Prozess heißt auch neuronale oder synaptische Plastizität. Das beantwortet zum Beispiel die Frage „Wie lernt das Gehirn?“. Denn Lernfähigkeit kommt dadurch zustande, dass durch ständiges Wiederholen entsprechende Synapsen verstärkt werden.

Die Entwicklung des Gehirns

Das Gehirn eines Embryos entwickelt sich etwa ab der vierten Schwangerschaftswoche. Dazu bilden sich aus dem vorderen Teil Neuralrohr drei bläschenförmige Erweiterungen aus. Bereits in dieser frühen Entwicklungsphase wird das Gehirn also in unterschiedliche Abschnitte eingeteilt. Aus den drei ersten Bläschen bilden sich das Vorder-, das Mittel- und das Rautenhirn. Im Laufe der Entwicklung gehen daraus dann weitere Hirnbläschen hervor, welche die restlichen Gehirnabschnitte bilden.

Energiebedarf und Schutz des Gehirns

Da der Energieverbrauch des Gehirns so hoch und der Stoffwechsel dort so aktiv ist, benötigt es sehr viel Sauerstoff und Glucose (Energielieferant). Denn obwohl das Gehirn nur 2% des Körpergewichts ausmacht, geht ungefähr ein Fünftel unseres gesamten Sauerstoffbedarfs an das Gehirn.

Die Durchblutung des Gehirns läuft über zwei große, jeweils in Paaren angelegte Arterien ab. Seitlich am Hals entlang verläuft die innere Halsschlagader (Arteria carotis interna), die aus der Halsschlagader (Arteria carotis communis) entspringt. gelangen, gibt es eine Schranke. Die sogenannte Blut-Hirn-Schranke stellt eine Barriere zwischen den Blutgefäßen und den Nervenzellen dar.

Die Plastizität des Gehirns: Lernen und Anpassung

Das Gehirn ist nicht statisch, sondern verändert sich ständig. Diese Fähigkeit, sich immer wieder neu zu strukturieren, begleitet uns ein Leben lang und wird als Neuroplastizität bezeichnet. Beim Lernen setzt man neue Reize. Das neuronale Netz verändert sich, es bilden sich neue Verbindungen unter den Nervenzellen, es wird dichter und größer.

Lesen Sie auch: Lesen als Denken mit fremdem Gehirn

Nicolas Schuck, Psychologe und Neurowissenschaftler am Max-Planck-Institut für Bildungsforschung Berlin, erforscht mit seinem Team, wie das Gehirn Informationen verarbeitet. Gerade beim Geigelernen über Wochen und Monate hinweg, wird die Struktur des Gehirns verändert. Bestimmte Verbindungen zwischen den Nervenzellen und Hirnarealen werden aktiver, besonders diejenigen, die für das Geigespielen notwendig sind.

"Wir verstehen vor allen Dingen darunter die wechselseitige Beziehung von Struktur und Funktion. Also, wie ändert sich das Gehirn, wenn ich es benutze und wie verändert das veränderte Gehirn wiederum mein Handeln? Die Fähigkeit des Gehirns, sich immer wieder neu zu strukturieren, hilft aber auch, dass wir uns in unbekannten Umgebungen orientieren können und mit neuen Situationen zurechtkommen. Diese Anpassungsleistung hilft uns Menschen bei komplexen Zusammenhängen den Durchblick zu bewahren. Wir können schnell reagieren, abwägen, was neu und wichtig ist und mit bereits gespeicherten Informationen verbinden.

Wenn Nervenzellen sich neu bilden, dann sprechen Forscher von einer Neurogenese. Diese Neubildung der Nervenzellen findet hauptsächlich im Hippocampus statt. Dieser Bereich im Gehirn ist für das Gedächtnis und Lernen zuständig. Ein Hirnareal, das aber auch zur räumlichen Orientierung notwendig ist. Bis ins hohe Alter können sich im Hippocampus Nervenzellen erneuern. Das ist für Menschen von Bedeutung, die aufgrund eines Schlaganfalls viele Dinge neu lernen müssen.

Routinen und Gewohnheiten

Das Gehirn spielt auch bei Routinen eine Rolle. "Sind wir einmal an eine Verhaltensweise gewöhnt, schalten wir gewissermaßen auf Autopilot", sagt Lars Schwabe, Professor für Psychologie an der Universität Hamburg. Das menschliche Gehirn spare damit Arbeit. Das zeigt sich auch bei der Ernährung: Essen wir Lebensmittel mit sehr viel Zucker und Fett, gewöhnt sich unser Gehirn daran und verlangt nach mehr. Wissenschaftler fanden heraus, dass Bereiche im Gehirn an Signale des Magens gekoppelt sind, die vermutlich das menschliche Hunger- und Sättigungsgefühl beeinflussen. Die Effekte von Zucker und Fett auf das Gehirn sind sogar auf MRT-Bildern zu sehen. Zu der Frage, wie lange es dauert, neue, gesunde Gewohnheiten aufzunehmen, gibt es unterschiedliche Positionen: Die Dauer variiert je nach Studie und Routine zwischen 18 und 245 Tagen.

Forschungsmethoden

Mit Hilfe der Neurowissenschaften können die Fähigkeiten unseres Gehirns immer genauer erklärt werden. Ein Blick ins Gehirn ist mit bildgebenden Verfahren, wie der Magnetresonanztomographie (MRT) möglich. Damit kann man Veränderungen von Hirnarealen untersuchen und das neuronale Netz in seiner Dichte erfassen. Es bietet Möglichkeiten immer besser zu verstehen, wie unser Gehirn tatsächlich lernt. Aber die neuronalen Aktivitäten im Detail zu erkennen, dafür reicht das MRT-Verfahren nicht aus.

Lesen Sie auch: Denken, Fühlen, Handeln: Das Gehirn

Die Rolle des Gehirns bei komplexen Funktionen

Das menschliche Gehirn ist das komplizierteste Organ, das die Natur je hervorgebracht hat: 100 Milliarden Nervenzellen und ein Vielfaches davon an Kontaktpunkten verleihen ihm Fähigkeiten, an die kein Supercomputer bis heute heranreicht. Eine der wichtigsten Eigenschaften ist seine Lernfähigkeit. Doch wie kann eine Ansammlung von Nervenzellen überhaupt etwas lernen? Bis vor wenigen Jahren galt unter Wissenschaftlern als ausgemacht: Das Gehirn eines Erwachsenen verändert sich nicht mehr. Heute weiß man jedoch, dass das Gehirn bis ins hohe Alter laufend umgebaut wird. Manche Neurobiologen vergleichen es sogar mit einem Muskel, der trainiert werden kann.

Lernen und Gedächtnis

Die Vorstellung, dass das Gehirn ein Leben lang lernfähig bleibt, ist aus wissenschaftlicher Sicht unbestritten. Anders hätte der Mensch die vielfältigen Herausforderungen, denen er im Laufe eines Lebens begegnet, auch gar nicht bewältigen können. So können wir bis ins hohe Alter eine Fremdsprache und Yoga lernen, uns Gesicht und Stimme eines neuen Arbeitskollegen merken oder den Weg zu einer neuen Pizzeria. Viele Wissenschaftler bezweifeln aber, dass Gehirnjogging-Übungen die generelle Leistungsfähigkeit des Gehirns steigern. Sie gehen davon aus, dass sich der Trainingseffekt nur auf die unmittelbar trainierte Aufgabe auswirkt.

Gehirn-Computer-Schnittstellen

Wissenschaftler können die Gehirnaktivität eines Menschen durch EEG-Signale mitlesen. Doch welche Signale gehören zu welchen Denkvorgängen? Bernhard Schölkopf und sein Team wollen diesen Code entschlüsseln und leistungsfähige Gehirn-Computer-Schnittstellen entwickeln.

Synaptische Plastizität

Synapsen übertragen nicht nur elektrische Signale von einer Nervenzelle zur nächsten, sie können die Intensität des Signals auch verstärken oder abschwächen. Psychosen gehören zu den schwerwiegendsten psychischen Erkrankungen, Früherkennung ist hier besonders wichtig. Kann künstliche Intelligenz Krankheiten erkennen? Welche Nervenzellen im Gehirn kommunizieren miteinander - und warum? Um das zu verstehen, kartografiert Moritz Helmstaedter das ‚soziale Netzwerk‘ im Gehirn, das unser Denken, Fühlen und Handeln steuert. Was passiert überhaupt, wenn unser Gehirn etwas Neues lernt und speichert?

Lernen findet an den Synapsen statt - also den Orten, an denen die elektrischen Signale von einer Nervenzelle zur nächsten übertragen werden. Neurowissenschaftler haben herausgefunden, dass Synapsen die Effektivität der Übertragung variieren können. Man bezeichnet dieses Phänomen auch als synaptische Plastizität. So kann eine Synapse durch einen Vorgang namens Langzeitpotenzierung (LTP) verstärkt werden, indem sie mehr Botenstoff ausschüttet oder mehr Botenstoffrezeptoren bildet. So wissen Neurowissenschaftler heute, dass Synapsen selbst im erwachsenen Gehirn noch komplett neu gebildet oder abgebaut werden können. An wenigen Stellen wie zum Beispiel im Riechsystem können sogar zeitlebens neue Nervenzellen gebildet werden. Es ist also nicht übertrieben, wenn man sagt: Unser Gehirn gleicht zeitlebens einer Baustelle.

Die Bedeutung der Plastizität

Stärkung und Schwächung, Auf- und Abbau - die Stärke, mit der Signale zwischen Nervenzellen übertragen werden, wird laufend angepasst. Etwas vereinfacht könnte man sich also vorstellen, dass die Signalübertragung verstärkt wird, wenn das Gehirn etwas speichert - und abgeschwächt wird, wenn es vergisst. Ohne die Plastizität würde dem Gehirn folglich etwas Fundamentales fehlen: seine Lernfähigkeit.

Trainingseffekte

Mit dem Lernen verhält es sich wie mit dem Sport: Je mehr eine bestimmte Fähigkeit gefordert wird, desto effektiver wird sie erledigt. Wer beispielsweise Taxi fährt, muss sich gut orientieren und Routen merken können. Durch die tägliche Arbeit wird so das Ortsgedächtnis immer besser. Das hinterlässt auch Spuren im Gehirn, zum Beispiel im Gehirn Londoner Taxifahrer: Forscher haben herausgefunden, dass in ihrem Gehirn der Hippocampus - ein für das Ortsgedächtnis zentrale Region im Gehirn - über die Jahre größer wird. Offenbar braucht ein derart trainiertes Orientierungsvermögen auch mehr Raum! Ob die Taxifahrer auch generell ein besseres Gedächtnis besitzen, ist noch unbekannt.

Reparaturmechanismen

Seine Plastizität hilft dem Gehirn zudem, Schäden zumindest teilweise zu reparieren. Sterben beispielsweise bei einem Schlaganfall Nervenzellen ab, können benachbarte Hirnregionen die Aufgaben des betroffenen Gebiets zum Teil übernehmen. Am Max-Planck-Institut für Kognitions- und Neurowissenschaften haben Forscher herausgefunden, dass das Gehirn so die Schäden nach einem Schlaganfall zum Teil kompensieren kann. Wissenschaftler erforschen an verschiedenen Max-Planck-Instituten, wie das Gehirn und seine Nervenzellen plastisch bleiben.

Verschaltung und funktionelle Magnetresonanztomografie (fMRT)

Ein weiteres wichtiges Forschungsfeld ist die Verschaltung innerhalb des Gehirns. Das menschliche Gehirn lässt sich nach verschiedenen Kriterien untergliedern. Entwicklungsgeschichtlich beispielsweise besteht es wie das aller Wirbeltiere aus dem End-, Zwischen-, Mittel-, Hinter- und Markhirn, auch als Tel-, Di-, Mes-, Met- und Myelencephalon bezeichnet. Anatomisch fallen besonders die Bereiche ins Auge, die als Groß-, Zwischen- und Kleinhirn (Cerebellum) bezeichnet werden, sowie der Hirnstamm.

Besonders auffällig ist die zum Endhirn gehörende sogenannte Großhirnrinde, der sogenannte Kortex. Sie ist im Laufe der Evolution so stark gewachsen, dass sie fast das gesamte Gehirn umgibt. Die Großhirnrinde ist Sitz vieler höherer geistiger Fähigkeiten. Einzelne Bereiche haben dabei unterschiedliche Aufgaben. So sind manche Areale darauf spezialisiert, Sprache zu verstehen, Gesichter zu erkennen oder Erinnerungen abzuspeichern. In der Regel ist aber keine Region allein für eine bestimmte Fähigkeit verantwortlich, sondern nur im Zusammenspiel mit anderen.

Welche Gehirngebiete miteinander verbunden sind, untersuchen Wissenschaftler mithilfe der sogenannten Magnetresonanztomografie (MRT). Mit dieser Technik können sie die zu Fasersträngen gebündelten Fortsätze von Nervenzellen sichtbar machen, die die Areale der Großhirnrinde miteinander verbinden. Auf diese Weise haben Sprachforscher beispielsweise eine für das Sprachvermögen zentrale Gehirnregion entdeckt: den sogenannten Fasciculus Articuatus. Ohne dieses Nervenfaserbündel können Kleinkinder keine komplexen Sätze bilden und verstehen. Dies gelingt erst, wenn diese Verbindung genug entwickelt ist.

Auch bei Schimpansen haben Forschende den Fasciculus Articuatus entdeckt. Bei diesen ist er aber schwächer ausgebildet als beim Menschen. Folglich schaffen die Tiere es trotz jahrelangen Trainings nicht, selbst einfachste Sätze zu bilden - und das, obwohl andere erforderliche Hirnareale sowie anatomische Voraussetzungen zum Sprechen durchaus vorhanden sind. Mit einer Variante dieser Technik, der sogenannten funktionellen Magnetresonanztomografie, können Wissenschaftler zwischen aktiven und nicht aktiven Gehirnregionen unterscheiden. Damit haben sie viel über den Aufbau und die Funktionsweise des Gehirns gelernt. So haben Max-Planck-Forscher aus Leipzig herausgefunden, warum bei Menschen, die stottern, ein Ungleichgewicht zwischen der Hirnaktivität von linker und rechter Großhirnhälfte auftritt: Innerhalb des überaktiven rechten Netzwerkes haben sie eine Faserbahn entdeckt, die bei den Betroffenen deutlich stärker ausgebildet ist, als bei Menschen ohne Sprechprobleme. Je stärker der sogenannte Frontale Aslant Trakt ist, desto stärker stottert ein Mensch.

Konnektomforschung

Einen exakten Schaltplan des Gehirns lässt sich jedoch mit der MRT-Technik nicht erstellen, dafür ist die Genauigkeit der Methode nicht hoch genug. Schließlich sitzen bis zu 10.000 Synapsen auf einer Nervenzelle, 100 Billionen sind es insgesamt. Dies zeigt, wie dicht das Kommunikationsnetz im Gehirn ist. In diesem Netz können einerseits benachbarte Nervenzellen miteinander verknüpft sein, andererseits auch Zellen, die weit voneinander entfernt sind. Die Wissenschaftler entwickeln deshalb neue Methoden, mit denen sie das Konnektom entschlüsseln können. Als Modellfälle dienen ihnen dafür Mäuse: Sie haben zum Beispiel die Verschaltung von Bereichen der Netzhaut des Auges sowie der Großhirnrinde aufgeklärt und herausgefunden, dass Nervenzellen im sogenannten entorhinalen Kortex der Großhirnrinde wie ein Transistor organisiert sind: Bevor eine Nervenzelle eine andere Zelle aktivieren kann, kontaktiert sie eine hemmende Zelle und wird so in ihrer eigenen Aktivität behindert. Anhand solcher Schaltpläne wollen Wissenschaftler lernen, wie das Gehirn funktioniert. An Max-Planck-Instituten arbeiten sie bereits heute daran, die Prinzipien der Informationsverarbeitung aufzuklären. Derzeit konzentrieren sie sich auf einfacher aufgebaute Gehirne, die weniger Nervenzellen und -fasern besitzen als das Gehirn des Menschen.

Tiermodelle in der Hirnforschung

Mäuse sind ein solcher Modellfall für Neurowissenschaftler. Sie besitzen als Säugetiere ein ähnlich aufgebautes und funktionierendes Gehirn wie der Mensch. Trotz aller Ähnlichkeit zum Gehirn des Menschen gibt es natürlich auch Unterschiede. So haben Forschende des Max-Planck-Instituts für Hirnforschung entdeckt, dass der Mensch ein dichtes Netz aus hemmenden Interneuronen besitzt, die mit anderen Interneuronen in Verbindung stehen. Mäuse haben dies in dieser Form nicht. Die Forschenden wollen nun die Funktion dieses Netzwerks herausfinden. Eine Möglichkeit ist, dass ein solches hemmendes Netzwerk hilft, Sinneseindrücke länger im Arbeitsgedächtnis zu halten.

Noch einfacher aufgebaut und leichter zu untersuchen ist das Gehirn von Zebrafischen und ihrer Larven. So besitzt das Gehirn einer Fischlarve nicht nur lediglich 100.000 Nervenzellen und damit eine Million Mal weniger als das des Menschen, es ist auch noch nahezu völlig transparent. Wissenschaftler können deshalb ohne operativen Eingriff mit ihren Mikroskopen ins Gehirninnere blicken. An diesem vergleichsweise einfach aufgebauten Gehirn können Forschende viel über die Arbeitsweise des Fischgehirns lernen und dabei Rückschlüsse auf die Abläufe im menschlichen Gehirn ziehen.

Auch Wirbellose können ein Modell für Neurowissenschaftler sein. Ihre Nervenzellen sind zwar sehr klein, dadurch kann ihre Aktivität nicht so leicht gemessen werden. Dafür lassen sich wegen der vergleichsweise einfacheren Architektur die Prinzipien von Verschaltungen zur Wahrnehmung und Verarbeitung von Umweltreizen analysieren. So können Forscher anhand des Gehirns von Fruchtfliegen lernen, wie der Geruch von Nahrung die Fortpflanzung beeinflusst. Durch die Analyse des Sehsystems von Schmeißfliegen wollen sie herausfinden, wie die Insekten Bewegungen so unglaublich schnell wahrnehmen können. Selbst ein so einfach aufgebauter Organismus wie der Fadenwurm C.

Das Gehirn als Informationsverarbeiter

Das Gehirn arbeitet wie ein großer Computer. Es verarbeitet Sinneseindrücke und Informationen des Körpers und schickt Botschaften in alle Bereiche des Körpers zurück. Doch das Gehirn kann weit mehr als eine Maschine: Mit dem Gehirn denkt und fühlt der Mensch, hier liegen die Wurzeln seiner Intelligenz.

Unser Denkorgan ist ungefähr so groß wie zwei geballte Fäuste und wiegt etwa 1,5 Kilogramm. Von außen ähnelt das Gehirn durch Windungen und enge Spalten einer überdimensionalen Walnuss. Das Großhirn besteht aus einer rechten und einer linken Gehirnhälfte. Beide sind durch ein dickes Bündel aus Nervenfasern verbunden, dem Balken. Jede Gehirnhälfte besteht wiederum aus sechs Bereichen (Lappen) mit unterschiedlichen Funktionen. Das Großhirn kontrolliert Bewegungen und verarbeitet Sinneseindrücke von außen. Hier entstehen bewusste und unbewusste Handlungen und Gefühle. Es ist außerdem für Sprache und Hören, Intelligenz und Gedächtnis verantwortlich.

Die Funktionen der Gehirnhälften

Die beiden Gehirnhälften haben zum Teil unterschiedliche Funktionen: Während die linke Hälfte bei den meisten Menschen auf Sprache und abstraktes Denken spezialisiert ist, kommt die rechte in der Regel dann zum Einsatz, wenn es um räumliches Denken oder bildhafte Zusammenhänge geht. Die rechte Gehirnhälfte steuert die linke Körperseite, die linke Hälfte ist für die rechte Seite zuständig. Im Großhirn ist die Hirnrinde der linken Gehirnhälfte für die Sprache verantwortlich. Die Hirnrinde der rechten Gehirnhälfte vermittelt dem Gehirn die räumliche Stellung des Körpers - beispielsweise, wo sich der Fuß gerade befindet. Der Thalamus teilt dem Großhirn unter anderem Sinneseindrücke der Haut, der Augen und der Ohren mit. Der Hypothalamus reguliert zum Beispiel Hunger, Durst und Schlaf und kontrolliert zusammen mit der Hirnanhangdrüse (Hypophyse) den Hormonhaushalt.

Der Hirnstamm schaltet Informationen vom Gehirn zum Kleinhirn und dem Rückenmark um und kontrolliert Bewegungen der Augen sowie die Mimik.

Die Blutversorgung des Gehirns

Das Gehirn muss ständig mit genügend Sauerstoff, Glukose und weiteren Nährstoffen versorgt werden. Deshalb ist es besonders gut durchblutet. Die vordere Hirnarterie (Arteria cerebri anterior) versorgt das Gewebe hinter der Stirn und im Bereich des Scheitels. Die mittlere Hirnarterie (Arteria cerebri media) ist für die Seite und weiter innen liegende Gehirnbereiche wichtig. Die vordere und die mittlere Hirnarterie zweigen von der inneren Halsschlagader ab. Die hintere Hirnarterie (Arteria cerebri posterior) versorgt den Hinterkopf und den unteren Bereich des Gehirns sowie das Kleinhirn. Sie wird mit Blut aus den Wirbelarterien gespeist.

Bevor die drei Arterien in „ihre“ Hirnregionen ziehen und sich dort in kleinere Äste verzweigen, liegen sie nahe beieinander unterhalb des Gehirns. Hier sind sie über kleinere Blutgefäße miteinander verbunden - ähnlich wie in einem Kreisverkehr. Auch an weiter entfernten Stellen gibt es Verbindungswege zwischen den einzelnen Arterien. Das hat den Vorteil, dass Durchblutungsstörungen im Gehirn bis zu einem gewissen Grad ausgeglichen werden können: Wenn zum Beispiel ein Arterienast allmählich immer enger wird, kann über diese „Umwege“ (sogenannte Kollateralen) trotzdem Blut in den betroffenen Hirnbereich fließen.

Die feinsten Aufzweigungen (Kapillaren) der Hirnarterien geben zwar Sauerstoff und Nährstoffe aus dem Blut an die Gehirnzellen ab - für andere Stoffe sind sie jedoch weniger durchlässig als vergleichbare Blutgefäße im übrigen Körper. Fachleute nennen diese Eigenschaft „Blut-Hirn-Schranke“. Sie kann das empfindliche Gehirn zum Beispiel vor im Blut gelösten Schadstoffen schützen.

„Verbrauchtes“ - also sauerstoffarmes - Blut wird über die Gehirnvenen abtransportiert. Sie leiten es in größere Blutgefäße, die sogenannten Sinusse. Die Sinuswände sind durch harte Hirnhaut verstärkt, die die Gefäße gleichzeitig aufspannen.

Erkrankungen des Gehirns

Das Gehirn kann aber auch durch verschiedene Ursachen in seiner Funktion gestört oder beschädigt werden. Am besten können Schädigungen durch ein Gehirn-MRT festgestellt werden. Bei der Magnetresonanztomographie (MRT) wird der Kopf sozusagen gescannt und ein Bild erstellt. Je nachdem, welcher Bereich des Gehirns beschädigt wird, können ganz unterschiedliche Symptome auftreten.

  • Schlaganfall: Eine Durchblutungsstörung im Gehirn durch den Verschluss eines Blutgefäßes, die zu Sauerstoffunterversorgung im entsprechenden Gebiet führt.
  • Gehirntumor: Es gibt gutartige und bösartige Hirntumore.
  • Demenz: Unter Demenz versteht man die Abnahme von Gedächtnis- und Denkleistungen. Eine Art der Demenz ist Alzheimer.
  • Parkinson: Bei Parkinson kommt es zum Absterben einer bestimmten Art von Nervenzellen im Gehirn. Dadurch herrscht eine geringere Konzentration des Botenstoffs Dopamin vor.

Die hier genannten Erkrankungen treten also alle im ersten Teil des zentralen Nervensystems (ZNS) - dem Gehirn - auf. Den zweiten Teil des ZNS bildet das Rückenmark.

tags: #denken #gehirn #biologie