Synapsen sind essenzielle Kontaktstellen zwischen Nervenzellen und anderen Zellen, wie Sinnes-, Muskel- oder Drüsenzellen. Der Begriff Synapse wurde im Jahre 1897 von Charles S. Sherrington geprägt. Sie ermöglichen die Informationsübertragung im Nervensystem. Obwohl die Mehrzahl der Synapsen mit einer chemischen Informationsübertragung arbeitet, gibt es in einigen Fällen eine direkte elektrische Weiterleitung. Dieser Artikel beleuchtet die Unterschiede zwischen erregenden (exzitatorischen) und hemmenden (inhibitorischen) Synapsen und ihre jeweilige Funktionsweise im Nervensystem.
Arten von Synapsen
Grundsätzlich lassen sich Synapsen in zwei Haupttypen unterteilen:
- Elektrische Synapsen: In elektrischen Synapsen wird das Aktionspotential direkt und ohne Umwege auf die nachfolgende Zelle weitergeleitet. Sie haben direkte Verbindungskanäle, so genannte Gap junctions, über welche die Intrazellulärräume unmittelbar aneinander grenzender Zellen miteinander gekoppelt sind. Gap junctions sind Poren in der Zellmembran, die durch bestimmte Proteine, die Connexine gebildet werden. Sechs Connexin-Moleküle kleiden die Pore aus, zusammen bilden sie ein Connexon. Durch den Kontakt zwischen zwei Connexonen benachbarter Zellen entsteht ein Kanal, der beide Membranen durchquert. Durch elektrische Synapsen erfolgt eine direkte Ausbreitung von Änderungen des Membranpotentials über einen relativ geringen ohmschen Widerstand, aber auch die Diffusion von Molekülen, wie z.B. sekundärer Botenstoffe. Die Informationsübertragung an elektrischen Synapsen erfolgt in weniger als einer Millisekunde!
- Chemische Synapsen: Die meisten Synapsen sind chemische Synapsen. Grundsätzlich durchläuft die Erregung die chemische Synapse in einer Richtung (»unidirektional«), und zwar vom prä- zum postsynaptischen Teil. Die Moleküle des Neurotransmitters werden in den Nervenzellen produziert und wandern verstaut in kleinen Bläschen (= Vesikeln) zum Synapsenendknöpfchen des Axons, welches den präsynaptischen Teil der Synapse darstellt. Die Freisetzung von Neurotransmittern wird dort durch einen Anstieg der intrazellulären Calcium-Konzentration innerhalb weniger Millisekunden ausgelöst. Dies geschieht durch die Öffnung spannungsaktivierter Calciumkanäle. Voraussetzung dafür ist ein ankommendes Aktionspotential. Die Neurotransmitter befinden sich in Clustern direkt zwischen den an der präsynaptischen Membran angedockten Vesikeln. Das ermöglicht einen sehr starken und schnellen Anstieg der lokalen Ca2+-Konzentration in der Nähe der Vesikel. Durch Konformationsänderungen Calcium-bindender Proteine, besonders von Synaptotagmin wird die exozytotische Fusion der Vesikel mit der präsynaptischen Membran herbeigeführt und der Inhalt der Vesikel in den synaptischen Spalt freigesetzt. Außer Synaptotagmin ist eine Reihe anderer Proteine beteiligt. Dazu zählen zum Beispiel Complexin I und II, welche die Ausschüttung der Neurotransmitter beschleunigen. Fehlen beide Proteine, ist der Organimsus nicht lebensfähig. Fehlt nur eines der beiden Complexine treten Lernprobleme oder starke Bewegungsstörungen auf. An der postsynaptischen Membran, die auf der anderen Seite des synaptischen Spaltes liegt, werden die freigesetzten Neurotransmitter an Rezeptoren gebunden. Dadurch kann es zu einer Öffnung von ligandenabhängigen Ionenkanälen und damit zu einer Änderung des Membranpotentials der postsynaptischen Nervenzelle kommen. Alternativ kann eine Second-Messenger-Kaskade ausgelöst werden, die ebenfalls zu einer Änderung des Membranpotentials in der postsynaptischen Zelle führt.
Erregende Synapsen (Exzitatorische Synapsen)
Erregende Synapsen geben die ankommende Depolarisation weiter. Sie verfügen also über einen Transmitter, welcher die Durchlässigkeit für Na+-Ionen erhöht. Die Erregung einer einzelnen Synapse würde jedoch niemals zum Weiterleiten eines Aktionspotentials im angeschlossenen Neuron führen. Vielmehr gibt es erregende (exzitatorische) und hemmende (inhibitorische) Synapsen, welche erregende (EPSP = exzitatorisches postsynaptisches Potential) oder hemmende (IPSP = inhibitorisches postsynaptisches Potential) Wirkung haben können. Nur wenn mehrere erregende EPSP gleichzeitig an verschiedenen Stellen (räumliche Summation) oder in ausreichend schneller zeitlicher Abfolge (zeitliche Summation) in einem Neuron eintreffen, entsteht in diesem ein Aktionspotential.
Funktionsweise:
- Der Prozess beginnt mit der Bindung von Neurotransmittern an Rezeptoren der postsynaptischen Membran.
- Dies führt zur Öffnung von Natrium-Ionen-Kanälen, wodurch Na+-Ionen in die Zelle strömen.
- Die resultierende Depolarisation der Membran wird bis zum Axonhügel weitergeleitet, wo sich die EPSP sammeln.
EPSP (Exzitatorisches Postsynaptisches Potential):
- Ein EPSP entsteht in einer exzitatorischen Synapse.
- Bei dem erregenden Potential steigt die Spannung in der postsynaptischen Zelle, also der Nervenzelle hinter dem synaptischen Spalt (Spalt zwischen Prä- und postsynaptischer Membran), an. Das bedeutet, die Spannung wird positiver.
- Durch eine präsynaptische Erregung kommt es zum Einstrom von Botenstoffen (Neurotransmittern) in den synaptischen Spalt der erregenden Synapse.
- Auf der Membran des postsynaptischen Neurons befinden sich entsprechende Rezeptoren, also Andockstellen für die Botenstoffe.
- Wenn die Neurotransmitter nun an die Rezeptoren binden, kommt es zur Öffnung von Ionenkanälen. Im Fall des EPSPs öffnen sich Natriumionenkanäle. Daher strömen Natriumionen (Na+) in die Zelle und das Potential steigt an. Je mehr Transmitter sich im synaptischen Spalt befinden, desto länger bleiben die Kanäle geöffnet.
- EPSP führen zu Depolarisation (beides ca. 2 mV).
Hemmende Synapsen (Inhibitorische Synapsen)
Im Vergleich dazu, bilden hemmende Synapsen durch Einstrom von negativen Chloridionen eine starke Hyperpolarisation, welche dann IPSP (inhibitorisches postsynaptisces Potential) genannt wird. Diese negative Spannung addiert sich mit eventuell vorhandenen positiven Spannungen und hebt dies auf, so dass am Axonhügel dann keine weiteren APs ausgelöst werden. => Hyperpolarisation der Folgezelle. Hemmende Synapsen bilden durch Einstrom von Cl--Ionen in die Postsynapse ein inhibitorisches postsynaptisches Potenzial (IPSP). Die Aktivierung hemmender Synapsen führt zu Hyperpolarisation (IPSP), wodurch ihr Membranpotential verändert wird und sie schwerer erregbar sind.
Funktionsweise:
- Bei IPSP binden Neurotransmitter an Rezeptoren der postsynaptischen Membran, was zur Öffnung von Kalium- und Chloridkanälen führt.
- K+-Ionen diffundieren nach außen, während Cl--Ionen in die Zelle strömen.
IPSP (Inhibitorisches Postsynaptisches Potential):
- An einer hemmenden Synapse kommt es zur Entstehung eines inhibitorischen postsynaptischen Potentials (IPSP). Dabei sinkt die Spannung der postsynaptischen Nervenzelle. Den Vorgang nennst du auch Hyperpolarisation.
- Als Ruhepotential bezeichnest du eine Spannung von ca. -70mV. Hierfür sind Kalium- und Chloridionenkanäle in der Nervenzellmembran verantwortlich. Auch sie werden durch Neurotransmitter im synaptischen Spalt geöffnet.
- Durch die Kaliumionenkanäle strömen dann positiv geladene K+-Ionen aus der Zelle heraus. Gleichzeitig strömen durch die Chloridionenkanäle negativ geladene Cl--Ionen in die Zelle. Beide Effekte führen dazu, dass die Ladung innerhalb der Zelle negativer wird. Daher kann die Nervenzelle die Erregung nicht weiterleiten.
Räumliche und zeitliche Summation
Die Erregung oder Hemmung von einer Synapse allein kann keine Reaktion hervorrufen. Die Dendriten (bäumchenartiger Fortsatz der Nervenzelle) sind jedoch nicht nur mit einer einzigen, sondern mit sehr vielen anderen Nervenzellen verbunden. Die Synapsen können dabei jeweils erregend oder hemmend sein. Das bedeutet, dass es am Axonhügel des Neurons zu einer Summation aller Potentiale (alle Potentiale zusammengerechnet) kommt. Wenn dabei ein Schwellenwert von ungefähr -50 mV überschritten wird, wird ein sogenanntes Aktionspotential ausgelöst. Das ist notwendig, damit die Nervenzelle das elektrische Signal entlang ihres Axons bis zur nächsten Nervenzelle weiterleiten kann.
Lesen Sie auch: Das Zusammenspiel von exzitatorischen und inhibitorischen Synapsen
- Räumliche Summation: Mehrere erregende EPSP treffen gleichzeitig an verschiedenen Stellen in einem Neuron ein.
- Zeitliche Summation: Erregende EPSP treffen in ausreichend schneller zeitlicher Abfolge in einem Neuron ein.
Vocabulary: Räumliche und zeitliche Summation beeinflussen die Wahrscheinlichkeit der Auslösung eines Aktionspotentials.
Neurotransmitter und ihre Rolle
Ob eine Synapse nun erregend oder hemmend ist, ist vom Kanaltyp abhängig. Der Neurotransmitter öffnet diesen nur! Es handelt sich um eine Eigenschaft der postsynaptischen Membran. Beachte: Eine Synapse kann immer nur einen Neurotransmitter enthalten. Sie kann auch nur hemmend oder erregend sein. Mischformen, bzw. zwei verschiedene Arten von Synapsen. ist.
Inhibitorische Neurotransmitter
Inhibitorische Neurotransmitter wirken demnach hemmend auf den Körper beziehungsweise die Erregungsleitung im Nervensystem. Das Gegenteil zu inhibitorischen Neurotransmittern sind jene, die eine exzitatorische Wirkung am Neuron herbeiführen.
Die häufigsten inhibitorischen Neurotransmitter:
- GABA: GABA ist der am häufigsten vorkommende Neurotransmitter im Nervensystem. GABA ist die Abkürzung für Gamma-Aminobuttersäure, welche aus der proteinogenen Aminosäure Glutamat hergestellt wird. Sie dockt an ihrem typischen GABA Rezeptor an, um seine Wirkung zu entfalten. GABA wirkt überwiegend im synaptischen Spalt und damit hemmend auf die Postsynapse der Nervenzelle.
- Glycin: Glycin ist ebenso ein häufig vorkommender Neurotransmitter im Nervensystem. Dabei wirkt der Transmitter besonders im ZNS inhibierend. Es kann nur postysynaptisch angreifen. Dabei hemmt auch Glycin, genau wie GABA, die Erregungsweiterleitung. Der Transmitter hat dabei auch einen eigenen Rezeptor an der Nervenzelle. Glycin ist aber im Gegensatz zu GABA seltener vorhanden und gehört zu den proteinogenen Aminosäuren. GABA hingegen ist das biogene Amin der proteinogenen Aminosäure Glutamat, aber keine Aminosäure an sich.
Funktion und Bedeutung im Körper
Inhibitorische Neurotransmitter sind elementar für das Funktionieren des Organismus'. Sie fungieren als eine Art Filter der Neurotransmission. Ohne die Inhibition wären manche Nerven dauerhaft gereizt und eine Differenzierung der Reize sowie ihre Einordnung wäre für den Körper und das Zentralnervensystem sehr belastend. Durch die inhibitorischen Neurotransmitter kann das ZNS also die Neurotransmission eindämmen. Sie sind wichtig, damit die Reize besser eingeordnet werden können und der Körper nicht überlastet wird.
GABA hemmt beispielsweise den Thalamus, also den Ort im Gehrin, der für die Umschaltung von Sinneseindrücken zuständig ist. Somit kommt es durch GABA nicht zu einer Überforderung des Gehirns.
Lesen Sie auch: Die Bedeutung von GABA im Nervensystem
Synapsengifte und ihre Wirkung
Als Synapsengifte werden chemische Substanzen bezeichnet, welche die Funktion von Synapsen erheblich stören oder sogar ganz unterbinden können. Diese Gifte blockieren entweder die Abgabe der Neurotransmitter in den synaptischen Spalt, oder aber sie sind den Neurotransmittern so ähnlich, dass sie an ihrer Stelle mit den Rezeptormolekülen in der postsynaptischen Membran reagieren und so die Erregungsleitung stören. Zu den bekanntesten Synapsengiften gehören viele Alkaloide wie etwa Muskarin, Atropin und Curare sowie Nikotin. Ein besonders wirksames Gift überhaupt ist das von Clostridien gebildete Botulinumtoxin. Synapsen können von Erkrankungen betroffen sein. Aber auch Gifte oder Toxine von Krankheitserrregern können diese Strukturen gezielt ausschalten.
Einige Beispiele für Synapsengifte und ihre Wirkungen:
- Botulinumtoxin: Das Gift des Bakteriums Clostridium botulinum ist das Botolinumtoxin. Es hindert die Synapsen an der Freisetzung von Acetylcholin an der neuromuskulären Endplatte und führt so zur Lähmung der betroffenen Muskulatur.
- Tetanustoxin: Das Gift von Clostridium tetani, welches als Tetanustoxin bekannt ist, verhindert die Freisetzung von Neurotransmittern in bestimmten Neuronen, da es Synaptobrevin proteolytisch abbaut und damit die Vesikelfusion verhindert. Tetanustoxin: Verhinderung der Freisetzung des hemmenden Neurotransmitters GABA. Muskelphysiologie der Skelettmuskulatur, die sich durch Krämpfe zeigt. Besonders betroffen ist die Kiefermuskulatur. Dadurch entsteht das klassische Zeichen der Kieferklemme. Im Verlauf wird zudem die Atemmuskulatur gelähmt.
- Parathion (E 605): Vergiftungen mit dem Phosphorsäureester Parathion (E 605) führen zu einer irreversiblen Hemmung des Enzyms Acetylcholinesterase, das den Abbau von Acetylcholin am Rezeptor katalysiert. Die Folge ist eine Daueraktivierung der Neurone und Muskelzellen, was zum Tod führen kann.
- Nikotin: Nikotin aktiviert postsynaptische Rezeptoren und öffnet dadurch Natriumkanäle. Dies hat eine erregende Wirkung auf den Körper und selbst schwächere Signale können bereits eine Depolarisation auslösen.
- Kokain: Kokain bewirkt, dass der Botenstoff Dopamin ohne ein elektrisches Signal in den synaptischen Spalt gelangt. Dopamin spielt eine Rolle bei der Motivations- und Emotionsregulation und ist auch als Botenstoff des Glücks bekannt. Die Wiederaufnahme in den präsynaptischen Teil wird außerdem verhindert. Dadurch ist ein Vielfaches der normalen Botenstoffmenge im synaptischen Spalt vorhanden und die nachfolgende Zelle wird dauergereizt.
Klinische Relevanz: Erkrankungen und Medikamente
Störungen der synaptischen Funktion können zu verschiedenen neurologischen und psychiatrischen Erkrankungen führen.
- Depressionen: Bei Depressionen spielen Störungen der synaptischen Signalübertragung eine zentrale Rolle. Besonders betroffen sind die Botenstoffe Serotonin, Noradrenalin und Dopamin, die an bestimmten Synapsen im Gehirn für die Regulation von Stimmung, Antrieb, Schlaf und emotionalem Erleben verantwortlich sind.
- Myasthenia gravis: Myasthenia gravis ist eine chronische Autoimmunerkrankung, die die Signalübertragung an der neuromuskulären Synapse stört. Dabei bildet das Immunsystem Autoantikörper gegen Acetylcholinrezeptoren auf der postsynaptischen Membran der Muskelzelle. Normalerweise bindet der Neurotransmitter Acetylcholin, der von der Nervenzelle freigesetzt wird, an diese Rezeptoren, um eine Muskelkontraktion auszulösen. Bei Myasthenia gravis blockieren oder zerstören die Autoantikörper jedoch die Rezeptoren, was die Signalweiterleitung stark beeinträchtigt.
- Lambert-Eaton-Syndrom: Das Lambert-Eaton-Syndrom ist eine seltene Autoimmunerkrankung, die die Signalübertragung an der neuromuskulären Synapse stört. Normalerweise wird an dieser Synapse der Neurotransmitter Acetylcholin aus der präsynaptischen Nervenzelle freigesetzt, um einen Muskelreiz auszulösen. Bei dem Lambert-Eaton-Rooke-Syndrom bildet das Immunsystem jedoch Antikörper gegen spannungsabhängige Calciumkanäle auf der präsynaptischen Membran. Diese Kanäle sind notwendig, damit Calcium in die Nervenzelle einströmt und die Freisetzung von Acetylcholin auslöst.
- Parkinson-Krankheit: Parkinson-Krankheit: neurodegenerative Erkrankung, bei der die Produktion von Dopamin durch Zerstörung der produzierenden Zellen in der Substantia nigra vermindert ist.
- Autismus-Spektrum-Störung: Autismus-Spektrum-Störung: neurologische Entwicklungsstörung, die durch reduzierte soziale Fähigkeiten, eingeschränkte Interessen und soziale Interaktionen sowie sich wiederholende und stereotype Verhaltensweisen gekennzeichnet ist. Diese Störung wird aufgrund der großen Variabilität in der Ausprägung und Symptomatik als „Spektrum“ bezeichnet. Autismus-Spektrum-Störung leiden unter schweren Beeinträchtigungen der Sprachfähigkeit und des Intellekts, während andere einen normalen oder sogar fortgeschrittenen Intellekt aufweisen.
Einige Medikamente entfalten ihre Wirkung auf unterschiedliche Art und Weise an Synapsen. Zu diesen gehören auch gewisse Antidepressiva, die die Wiederaufnahme von Noradrenalin oder Serotonin in die Präsynapse verhindern. BotoxBotulinumtoxin (umgangssprachlich: „Botox“) wird in der Medizin gezielt eingesetzt, um übermäßige Muskelaktivität oder Drüsentätigkeit zu hemmen. Es wirkt an der neuromuskulären Synapse, indem es die Freisetzung von Acetylcholin aus der präsynaptischen Nervenzelle blockiert - dadurch wird die Signalübertragung unterbrochen, und der Muskel entspannt sich. Klinisch wird es z. B.
Lesen Sie auch: Überblick über Glutamat und seine Rolle
tags: #inhibitorische #exzitatorische #synapse #symmetrisch #asymmetrisch