Kaum ein anderes System des menschlichen Körpers ist so komplex wie unser Nervensystem. Es ist die zentrale Informations- und Kommunikationsplattform unseres Körpers. Als faszinierendes Netzwerk durchzieht es unseren gesamten Organismus und dient der Erfassung, Weiterleitung und Verarbeitung von Informationen. Dank des ständigen Austauschs vieler Milliarden Nervenzellen koordiniert es sämtliche Körperfunktionen und ermöglicht uns, unsere Umwelt wahrzunehmen. Erstaunlicherweise erfolgt die Arbeit des Nervensystems dabei immer nach demselben Prinzip: dem elektrischen Impuls. Dieser dient nicht nur der Reizwahrnehmung, sondern auch der Reizverarbeitung und Reizweiterleitung (z. B. motorische Befehle an die Muskeln).
Die Bausteine des Nervensystems: Nervenzellen und Gliazellen
Als kleinste funktionelle Einheit bilden die Nervenzellen (med.: Neuron) mit ihren umgebenden Gliazellen die Grundbausteine unseres Nervensystems. Die kleinen, meist stark verästelten Dendriten empfangen Signale, während das längere Axon die elektrische Erregung zum Ende der Nervenzelle weiterleitet. Dort angekommen, wird der Reiz durch die sogenannten Synapsen (Schaltstelle der Nervenzelle) zur nächsten Zelle transportiert. Häufig wird der Begriff „Nervenzelle“ bzw. Neuron mit „Nerv“ gleichgesetzt, auch wenn dies anatomisch nicht richtig ist. Ein Nerv besteht vielmehr aus einem Zusammenschluss mehrerer, parallel verlaufender, gebündelter Nervenfasern (Axone).
Arten von Nerven
Je nachdem, welche Aufgabe der Nerv erfüllt bzw. in welche Richtung er die Informationen weiterleitet, wird er als efferenter (motorischer), afferenter (sensorischer) oder gemischter Nerv bezeichnet. Efferente Nerven leiten elektrische Impulse vom Zentrum (Gehirn, Rückenmark) zur Peripherie, beispielweise zur Skelettmuskulatur. Afferente Nerven hingegen senden den Reiz von der Peripherie (z. B. Sinnesorgane) zum Zentrum.
Die Organisation des Nervensystems: ZNS, PNS, somatisch und vegetativ
Innerhalb des Nervensystems werden aber nicht nur die Nervenfasern aufgrund spezieller Eigenschaften unterteilt. Auch das Nervensystem als Ganzes lässt sich in verschiedene Bereiche untergliedern: Wird anhand der Lage bzw. des Aufbaus differenziert, ist vom zentralen Nervensystem (ZNS) oder peripheren Nervensystem (PNS) die Rede. Erfolgt die Einordnung gemäß der Funktion, spricht die Neurobiologie vom somatischen (willkürlichen) Nervensystem und vom vegetativen (unwillkürlichen) Nervensystem. Sowohl peripheres und zentrales Nervensystem als auch das somatische und vegetative Nervensystem sind in ihrer Funktion miteinander gekoppelt.
Das zentrale Nervensystem (ZNS): Gehirn und Rückenmark
Unser Gehirn und das Rückenmark bilden gemeinsam das zentrale Nervensystem, kurz ZNS. Bei Betrachtung der Gewebestruktur ist zu erkennen, dass sowohl Gehirn als auch Rückenmark aus einer grauen und weißen Substanz bestehen. Die graue Substanz, die vor allem aus Nervenzellkörpern besteht, befindet sich in der Großhirnrinde (Kortex) und im schmetterlingsförmigen Teil des Rückenmarks. Sie dient der Reizaufnahme und Reizverarbeitung. Die weiße Substanz bildet im Gehirn das innenliegende Gewebe aus Nervenfasern (Axone). Hier sind Nervenzellen durch millionenfache Verbindungen verschaltet und für die Reizweiterleitung verantwortlich.
Lesen Sie auch: Behandlungsmöglichkeiten bei Krämpfen über dem Bauchnabel
Als Kontroll- und Schaltzentrale ist das zentrale Nervensystem für uns lebenswichtig, denn es steuert die bewusste Koordination der Bewegung (Motorik), vermittelt Nachrichten aus der Umwelt oder unserem Körperinneren und reguliert das Zusammenspiel aller Körpersysteme (Atmung, Hormonhaushalt, vegetatives und peripheres Nervensystem, innere Organe, Herz-Kreislauf-System, Muskulatur). Darüber hinaus ermöglicht uns das zentrale Nervensystem komplexe Funktionen wie Gedächtnis (Lernen, Erinnerung), Bewusstsein, Gefühle, Verstand und Vernunft.
Das zentrale Nervensystem (ZNS) umfasst Nervenbahnen in Gehirn und Rückenmark. Es befindet sich sicher eingebettet im Schädel und dem Wirbelkanal in der Wirbelsäule.
Wichtige Bestandteile des Gehirns
- Hirnstamm: Regulation lebenswichtiger Funktionen (u.a. Atmung, Herzschlag, Blutdruck)
- Zwischenhirn: Schaltzentrale zwischen Hirnstamm und Großhirn, Steuerung von Hormonhaushalt und Schlaf-Wach-Rhythmus
- Kleinhirn: Koordination von Bewegungen und Gleichgewicht
- Großhirn: Sitz von Bewusstsein, Gedächtnis, Sprache und komplexen Denkprozessen
Das periphere Nervensystem (PNS): Verbindung zur Außenwelt
Als peripheres Nervensystem werden all jene Nerven zusammengefasst, die nicht zum ZNS gehören. Die Hirnnerven verknüpfen unsere Sinnesorgane mit dem Gehirn und der Muskulatur im Kopf- und Rumpfbereich. Entsprechend der Reihenfolge, in der sie aus dem Gehirn austreten, werden sie mit römischen Zahlen nummeriert. Zu den Hirnnerven gehören beispielsweise unser Riechnerv (I. Hirnnerv; Nervus olfactorius), der Sehnerv (II. Hirnnerv; Nervus opticus) und unser Gesichtsnerv (VII. Hirnnerv; Nervus facialis). Rund die Hälfte der Hirnnerven sind sogenannte gemischte Nerven, d. h. sie enthalten sowohl motorische als auch sensorische Fasern.
Die Spinalnerven sind ebenfalls gemischte Nerven. Sie bilden sich aus den Nervenwurzeln im Rückenmark und verzweigen sich nach ihrem Austritt aus dem Wirbelkanal in 3-4 Äste, um verschiedene Körperbereiche versorgen zu können. Der vordere Ast z. B. versorgt die vordere Rumpfwand und die Gliedmaßen.
Somatisches und vegetatives Nervensystem: Willkürliche und unwillkürliche Funktionen
Je nachdem, ob unser Körper Reize der Umwelt verarbeitet oder Körperfunktionen im Inneren koordiniert, unterscheidet man zwischen somatischem (willkürlichem) Nervensystem und vegetativem (unwillkürlichem) Nervensystem.
Lesen Sie auch: Ursachen, Symptome und Behandlung von Demenz
Das willkürliche Nervensystem (somatisches Nervensystem) steuert alle Vorgänge, die einem bewusst sind und die man willentlich beeinflussen kann. Dies sind zum Beispiel gezielte Bewegungen von Gesichtsmuskeln, Armen, Beinen und Rumpf. Das somatische (willkürliche) Nervensystem steuert die Motorik der Skelettmuskulatur und damit alle bewussten, willentlichen Körperreaktionen und Reflexe, die als Reaktion auf unsere Umwelt erfolgen. Wenn wir also im Sommer nach draußen gehen und realisieren, dass es uns zu hell ist, leiten die Sinneszellen der Augen die Information über sensorische Nervenfasern an das Gehirn weiter. Dort wird die Information dann zur Entscheidung umgewandelt, eine Sonnenbrille zu tragen - und der Befehl „Sonnenbrille aufsetzen“ wird über motorische Nervenfasern an die Hand weitergeleitet.
Im Gegensatz zum somatischen Nervensystem haben wir über das vegetative Nervensystem keinerlei Kontrolle. Die Tatsache, dass wir es nicht beeinflussen können, bedeutet aber nicht, dass es weniger wichtig für uns ist. Im Gegenteil: Das vegetative Nervensystem (autonomes Nervensystem) regelt die Abläufe im Körper, die man nicht mit dem Willen steuern kann. Es ist ständig aktiv und reguliert beispielsweise Atmung, Herzschlag und Stoffwechsel. Hierzu empfängt es Signale aus dem Gehirn und sendet sie an den Körper. In der Gegenrichtung überträgt das vegetative Nervensystem Meldungen des Körpers zum Gehirn, zum Beispiel wie voll die Blase ist oder wie schnell das Herz schlägt. Das vegetative Nervensystem kann sehr rasch die Funktion des Körpers an andere Bedingungen anpassen. Ist einem Menschen beispielsweise warm, erhöht das System die Durchblutung der Haut und die Schweißbildung, um den Körper abzukühlen.
Das vegetative Nervensystem innerviert unser Herz, die Gefäße sowie Drüsen und die glatte Muskulatur der Eingeweide und steuert so sämtliche „Vitalfunktionen“ (u. a. Atmung, Verdauung, Stoffwechsel, Blutdruck, Herzfrequenz, Fortpflanzung). Wenn sich beim Sport unser Puls erhöht und wir zu schwitzen beginnen, verdanken wir das der Arbeit des vegetativen Nervensystems. Darüber hinaus beeinflusst das vegetative Nervensystem auch einzelne Organe und Muskeln, darunter unsere Sexualorgane oder den inneren Augenmuskel, der u.a. für die Pupillenreaktion zuständig ist.
Sympathikus und Parasympathikus: Das Zusammenspiel der Gegenspieler
Diese werden durch übergeordnete Schaltzentren im verlängerten Rückenmark und Hypothalamus reguliert. Sympathikus und Parasympathikus werden oft als Gegenspieler bzw. Antagonisten bezeichnet. Dabei wirkt der Sympathikus erregend bzw. leistungssteigernd (ergotrop) auf die Organfunktionen und versetzt unseren gesamten Körper in eine „Stresssituation“, den sogenannten „fight-or-flight“ Modus. In der Folge weiten sich die Pupillen, der Herzschlag und die Atmung werden beschleunigt, Energie wird freigesetzt. Vorgänge, die für eine sofortige Aktivität nicht so wichtig sind (z. B. Verdauung), werden gehemmt. So ist unser Körper bereit, Höchstleistungen zu vollbringen. Reize, die den Sympathikus aktivieren (sogenannte Stressoren) können sowohl physischer (z. B. Lärm, Hitze) als auch psychischer Natur sein.
Anatomisch hat der Sympathikus seinen Ursprung in den Nervenzellkörpern des Rückenmarks, deren Nervenfasern zwischen den Brust- und Lendenwirbeln aus dem Wirbelkanal austreten und sogenannte Ganglien (Ansammlungen von Nervenzellkörpern) bilden. Diese verbinden sich an beiden Seiten der Wirbelsäule zu einem perlschnurartigen sogenannten Grenzstrang aus, über den die Nervenfasersysteme in Verbindung stehen.
Lesen Sie auch: Behandlung des springenden Nervs am Ellenbogen
Als „Gegenspieler“ des Sympathikus ist der Parasympathikus der Teil des vegetativen Nervensystems, der für die Ruhe -und Regenerationsphasen („rest-and-digest“) verantwortlich ist und das innere Gleichgewicht wiederherstellt. Um dies zu erreichen, beginnt der Parasympathikus nach der Aktivierung des Sympathikus dadurch gegenzusteuern, dass er beispielsweise die Herzfrequenz senkt, die Pupillen verengt und den Stoffwechsel zum Aufbau von Reserven steigert. Gleichzeitig aktiviert der Parasympathikus die Tätigkeit des Verdauungssystems. Die Nerven des Parasympathikus haben ihren Ursprung im Hirnstamm und dem zum Kreuzbein gehörigen Bereich des Rückenmarks. Anders als im Sympathikus liegen die Ganglien des Parasympathikus aber nicht neben der Wirbelsäule, sondern dicht bei den versorgten Organen.
Akuter vs. chronischer Stress und die Rolle des Sympathikus und Parasympathikus
Akuter Stress ist eine natürliche, zeitlich begrenzte Reaktion des Sympathikus, um uns in Situationen, in denen wir gefordert sind, aufmerksamer und leistungsfähiger zu machen. In Urzeiten diente akuter Stress z.B. der Flucht vor einem wilden Tier oder der Jagd.. Und auch heute kann akuter Stress helfen, Herausforderungen zu meistern. Wird der Organismus jedoch in eine Art „Daueralarm-Zustand“ versetzt und der Parasympathikus kann nicht bzw. nur wenig zu Regenerationszwecken eingreifen, wird die Gesundheit früher oder später negativ beeinflusst. Denn chronischer Stress zehrt sowohl an den körperlichen als auch psychischen Reserven. Wer sich dauernd gestresst fühlt, tut daher gut daran, belastende Auslöser zu finden und diese nach Möglichkeit auszuschalten.
Das enterische Nervensystem: Das "Bauchhirn"
Das enterische Nervensystem ist der dritte Bereich des vegetativen Nervensystems, der als Geflecht von Nervenzellen den Verdauungstrakt durchzieht. Interessanterweise steuert das enterische Nervensystem nicht nur Verdauungsprozesse, sondern hat auch einen Einfluss auf unsere Gefühlswelt und unser Wohlbefinden. Umgekehrt scheinen aber auch Veränderungen im Magen-Darm-Trakt Auswirkungen auf Emotionen zu haben. Forschungsarbeiten der letzten Jahre deuten darauf hin, dass die Zusammensetzung der Darmflora hier eine Rolle spielt.
Die Funktion des Nervensystems: Reizaufnahme, -verarbeitung und -weiterleitung
Um sensorische Informationen zu übertragen und Körperfunktionen sowie Reaktionen zu koordinieren, arbeiten unser peripheres und zentrales Nervensystem als perfektes Team zusammen. Nicht immer wird dabei das Gehirn involviert. Bei Reflexen wie z. B. dem Kniesehnenreflex erfolgt die Reizverarbeitung und Reaktion im Rückenmark. Viele der Funktionen, die unser Nervensystem übernimmt, können wir bewusst steuern. Auf manches haben wir allerdings keinen Einfluss. Sowohl bei bewussten als auch bei unbewussten Reaktionen spielen die Sinneszellen als Übermittler der Informationen eine zentrale Rolle. Denn sie nehmen Sinnesreize (Sehen, Hören, Riechen usw.) aus der Umwelt wahr und leiten sie über das periphere Nervensystem an unser Gehirn. Abhängig vom Sinnesreiz werden verschiedene Arten von Rezeptoren erregt. Im Gehirn angekommen wird der Sinnesreiz dann schließlich mit übergeordneten Hirnprozessen wie z. B. Erinnerungen und Erfahrungen verknüpft und entsprechend bewertet.
Die vom Nervensystem gesammelten Informationen werden dann in elektrische Impulse umgewandelt und über Nervenfasern mit einer Geschwindigkeit von rund 400 km/h an das Gehirn weitergeleitet. Dort werden sie schließlich verarbeitet und gespeichert. Auf diese Weise werden nicht nur Bewegungsabläufe und die Funktion unserer Organe gesteuert.
Reizübertragung und -weiterleitung: Ein komplexer Prozess
Wie funktioniert Reizübertragung? Wie funktioniert Reizweiterleitung? Reizweiterleitung? Potentialveränderungen an der Zellmembran? Wie funktioniert Reizweiterleitung?
Die Reizübertragung erfolgt an der Synapse, dem Ort der Reizübertragung. Dabei werden Neurotransmitter ausgeschüttet, wie z.B. Acetylcholin, Noradrenalin, Glutamat, Serotonin, Dopamin, GABA, Glycin. Der Reiz für die Ausschüttung ist in der Regel eine Reaktion auf einen chemischen Reiz.
Das Nervensystem im Fokus der Forschung: Neurotechnologie
Nerven sind klein und leiten Informationen elektrisch. Ein Kontakt zwischen kleinsten technischen Systemen und den Nerven könnte eine Möglichkeit bieten, die Nervensignale auszulesen oder Information in sie hineinzuschreiben. Im Bereich der Biomedizinischen Mikrotechnik wird erforscht, wie neuro-technische Schnittstellen zu entwerfen und entwickeln sind und für welche medizinische Einsatzgebiete sie Alternativen zu Medikamenten oder sogar alleinige Möglichkeit einer Behandlung sein können.
Die Bedeutung des Nervensystems für die Entwicklung
Die Entwicklung einzelner Bestandteile des Nervensystems beginnt beim Embryo bereits in der 3. Schwangerschaftswoche. Daher ist es besonders wichtig, dass Frauen mit Kinderwunsch am besten schon vor der Empfängnis mit allen wichtigen Nährstoffen versorgt sind, die für den Aufbau von Nervengewebe nötig sind (v. a. Folsäure und Vitamin B12).
Der Vagusnerv: Ein Schlüsselspieler für Gesundheit und Wohlbefinden
Im Allgemeinen verbindet man das vegetative Nervensystem einerseits mit der Kampf-Flucht-Reaktion des Symphatikus und anderseits mit der Entspannung des Parasymphatikus. Meist überwiegt in der heutigen Zeit der Symphatikus. Man ist einem chronischen Stresszustand ausgeliefert und die Entspannnungsphase kommt zu kurz. Inzwischen gibt es viele neue Erkenntnisse zum vegetativen Nervensystem und der Rolle, die der Vagusnerv dabei spielt. Man erkennt zunehmend den Einfluss dieses Systems auf unseren Körper und auf unser seelisches Empfinden.
Fazit
Das Nervensystem ist ein unglaublich komplexes und faszinierendes System, das eine zentrale Rolle für unser Leben und unsere Gesundheit spielt. Es ermöglicht uns, die Welt um uns herum wahrzunehmen, zu denken, zu fühlen und zu handeln. Ein Verständnis der Funktionsweise des Nervensystems ist daher von großer Bedeutung.
tags: #vortga #uber #nervensystem