Informationsübertragung im Nervensystem: Ein komplexes Zusammenspiel elektrischer und chemischer Signale

Das Nervensystem ist ein komplexes Netzwerk, das es uns ermöglicht, mit unserer Umwelt zu interagieren und vielfältige Mechanismen im Inneren unseres Körpers zu steuern. Es nimmt Sinnesreize auf, verarbeitet diese und löst Reaktionen wie Muskelbewegungen oder Schmerzempfindungen aus. Ermöglicht wird dies durch die Kommunikation von Nervenzellen, den sogenannten Neuronen. Damit der Mensch fühlen, handeln und denken kann, müssen die rund 86 Milliarden Neurone ständig miteinander kommunizieren.

Die Grundlagen der neuronalen Kommunikation

Um die Funktionsweise des Nervensystems zu verstehen, ist es wichtig, sich den Aufbau einer Nervenzelle vor Augen zu führen. Vereinfacht gesagt besteht ein Neuron in der Regel aus dem Zellkörper (Soma) und mehreren Verästelungen, die mit anderen Nervenzellen in Kontakt stehen und über die Informationen empfangen oder gesendet werden. Die empfangenden Fortsätze werden Dendriten genannt, der sendende Fortsatz ist das Axon, welches bis zu einem Meter lang sein kann. Ein Neuron kann mit 100.000 bis 200.000 Fasern anderer Nervenzellen in Austausch treten.

Innerhalb eines Neurons wird ein einkommendes Signal elektrisch weitergeleitet. Zwischen zwei Neuronen werden Signale in der Regel chemisch über Neurotransmitter übertragen.

Das Ruhepotenzial: Die Ausgangsbasis

Solange ein Neuron nicht „feuert“, befindet es sich im Ruhezustand. In dieser Phase herrscht an der Außenhaut der Zelle, der Membran, eine bestimmte Spannung, das Ruhepotenzial vor. Im Ruhezustand sind mehr Kalium-Ionen im Inneren des Axons, während sich außerhalb mehr Natrium-Ionen befinden. Da Kalium-Ionen im Ruhezustand besser durch die Membran nach außen wandern können als Natrium-Ionen in die umgekehrte Richtung, herrscht an der Außenseite der Membran ein positiv geladenes Milieu, im Inneren der Zelle ein negatives. Dadurch entsteht eine Spannung über der Membran, die bei etwa -70 Millivolt liegt.

Das Aktionspotenzial: Der elektrische Impuls

Wird das Neuron entsprechend gereizt, etwa durch eine andere Nervenzelle oder einen sensorischen Input, entsteht an der Membran des Axons eine veränderte elektrische Spannung, die sich bis zu den Synapsen fortpflanzt. Man spricht vom Aktionspotenzial, das beim Menschen etwa eine Millisekunde andauert.

Lesen Sie auch: Wo unser Gedächtnis im Gehirn wohnt

Der Wechsel vom Ruhe- zum Aktionspotenzial erfolgt, indem bestimmte Ionen über die Zellmembran des Axons ein- und ausströmen. Kommt ein geeigneter Reiz, öffnen sich in der Membran kurzzeitig Ionen-Kanäle, über die sehr schnell positiv geladene Natrium-Ionen einströmen. Nun wird das Potenzial im Inneren positiver, mehr Kanäle öffnen sich, man spricht von einer Depolarisation. Nur wenn diese stark genug ist, sie also einen bestimmten Schwellenwert überschreitet, tritt das Aktionspotenzial als eine Art explosionsartige Umpolarisierung der Membran auf („Alles-oder-Nichts-Prinzip“).

Während das Aktionspotenzial wie eine Welle das Axon entlangschießt, beginnt am Axonhügel nahe dem Zellkörper bereits die Repolarisation: Kalium-Ionen treten über sich jetzt öffnende eigene Kanäle nach außen, während sich die Natrium-Kanäle wieder schließen. Das Ungleichgewicht der Ladungen verringert sich, bis der Ruhezustand wieder erreicht ist. Im Folgenden sorgen dann aktive Natrium-Kalium-Pumpen dafür, dass die eingeströmten Natrium-Ionen wieder nach außen und die Kalium-Ionen nach innen transportiert werden.

Die elektrische Weiterleitung funktioniert nach dem Alles-oder-Nichts-Prinzip: Erst wenn die Stärke des Signals einen Schwellenwert übersteigt, wird im Axon das Aktionspotenzial generiert. Die Botschaft und Dringlichkeit eines Signals zeigt sich an der Anzahl und der Frequenz der Aktionspotenziale. Besonders starke Reize lösen besonders viele und dicht aufeinanderfolgende Aktionspotenziale aus. Pro Sekunde kann eine Nervenzelle bis zu 500mal feuern.

Die Geschwindigkeit der elektrischen Weiterleitung hängt neben der Dicke des Axons (dicke Axone leiten schneller, dünne langsamer) auch von bestimmten Helferzellen ab, welche die Nervenfaser ummanteln: Im Gehirn und im Rückenmark sind das die Oligodentrozyten, im peripheren Nerv die Schwannzellen. Sie bilden häufig dichte, spiralförmige Hüllen um das Axon, die wie Perlen auf der Kette aufgereiht und von kleinen Aussparungen unterbrochen werden. Die Hüllen nennt man Myelin-​Scheiden, die Lücken dazwischen Ranvier´sche Schnürringe. Die Myelin-​Scheiden funktionieren wie die Isolierung eines Kabels. An diesen Stellen kann kein Aktionspotenzial entstehen - was dazu führt, dass sich der elektrische Impuls nicht kontinuierlich fortsetzt, sondern die Isolier-​Bereiche einfach überspringt. Die Erregung wird hierbei in Sprüngen von einem Schnürring zum nächsten weitergegeben (saltatorische Erregungsleitung).

Die Synapse: Die chemische Übertragung

Das Aktionspotenzial erreicht schließlich das Ende des Axons, das synaptische Endknöpfchen. Dies ist die Kontaktstelle zu einer anderen Nervenzelle. Die Synapsen sind die zentralen Schaltstellen der Informationsübertragung im Gehirn. Jede Nervenzelle hat bis zu 10.000 davon, im Extremfall sogar mehr als 100.000. Weil aber die synaptischen Endigungen der Senderzelle die Empfängerzelle nicht direkt berühren, bleibt ein winziger Spalt von 20 bis 50 Nanometern zwischen beiden.

Lesen Sie auch: Risikofaktoren für einen Schlaganfall

Um diese Barriere zu überwinden, nutzen die meisten Synapsen chemische Botenstoffe - wenngleich es auch einige gibt, die rein elektrisch arbeiten. Bei chemischen Synapsen fusionieren nach der Ankunft eines Aktionspotenzials die so genannten synaptischen Vesikel - etwa 40 Nanometer kleine Bläschen - mit der Zellmembran und schütten Botenstoffe in den Spalt aus. Diese so genannten Neurotransmitter können den Spalt überqueren, der die präsynaptische von der postsynaptischen Zelle trennt.

In der synaptischen Endigung löst das Aktionspotenzial die Freisetzung von chemischen Botenstoffen (Neurotransmittern) aus, die den synaptischen Spalt überbrücken und in der nächsten (postsynaptischen) Nervenzelle ein Aktionspotenzial auslösen können. Die Synapsen helfen, das elektrische Signal des Aktionspotenzials in ein chemisches “übersetzen”: Sie setzen Botenstoffe, Neurotransmitter, in den Spalt zwischen Sender- und Empfängerzelle frei.

Neurotransmitter: Botenmoleküle im Gehirn

Am postsynaptischen Neuron gibt es kompetente Annahmestellen für die Information: die Rezeptormoleküle. Jeder Rezeptor ist auf einen bestimmten Neurotransmitter spezialisiert wie ein Schlüssel und ein passendes Schloss. Die Neurotransmitter erzeugen in der Empfängerzelle das so genannte postsynaptische Potenzial, eine Veränderung im Membranpotenzial des Neurons: Das chemische Signal wird also wieder in ein elektrisches zurückübersetzt. Nervenzellen nutzen meist chemische Synapsen zur Kommunikation mit anderen Neuronen. An einem Neuron können hunderte bis tausende solcher Synapsen anderer Nervenzellen angedockt sein.

Aber Achtung: Die Wirkung der Neurotransmitter ist nicht immer exzitatorisch, also erregend. Sie können auch inhibitorisch, hemmend agieren und so die Entstehung eines neuen Aktionspotenzials verhindern (Alles-​oder-​Nichts-​Prinzip).

Elektrische Synapsen: Eine schnellere Alternative

Neben chemischen Synapsen wurden auch elektrische Synapsen entdeckt. Bei dieser elektrischen Kommunikation zweier Zellen spielen so genannte ‚gap junctions‘ eine Rolle - aus Proteinen bestehende Kanäle, die die Zellflüssigkeiten von zwei Neuronen verbinden. So können elektrische Signale Ionenströme durch diese Kanäle ohne Umwege direkt von Zelle zu Zelle weitergeben. „Mit gap junctions kann man viele Zellen über eine größere Entfernung miteinander synchronisieren“, sagt Nils Brose, Direktor der Abteilung für Molekulare Neurobiologie am Max-Planck-Institut für Experimentelle Medizin. „Wenn eine Zelle ein Signal erhält, dann geht das gleich auf die anderen Zellen über, da sie wie Stecker und Steckdose miteinander verbunden sind.“ Das mobilisiert in kürzester Zeit größere Nervenzellgruppen. Obwohl das sehr effizient klingt, kommt diese rein elektrische Form der Weiterleitung eher bei einfacher entwickelten Tieren wie Krebsen vor, wo sie zum Beispiel schnelle Fluchtreaktionen steuern.

Lesen Sie auch: Der Zusammenhang zwischen Alter und Demenz

Die Rolle der Inhibition bei der Signalweiterleitung

Bei jeder Sinneswahrnehmung verarbeitet das Gehirn die aufgenommenen Informationen Schritt für Schritt in aufeinander folgenden Ebenen. Neurone in jeder Ebene geben Signale in Form von elektrischen Impulsen an die nächste Ebene weiter. Dabei gibt es zwei Sorten von Signalen: solche, die die Aktivität der nachgeschalteten Zelle aktivieren, so genannte erregende Signale, und solche, die ihre Aktivität hemmen - inhibierende Signale.

Eine Nervenzelle erhält von der gleichen vorgeschalteten Struktur oftmals sowohl erregende als auch inhibierende Signale, wobei das hemmende Signal wenige Millisekunden nach dem erregenden Signal eintrifft. Dem liegt eine bestimmte Verschaltungsstruktur zugrunde, die so genannte „Feed Forward Inhibition" (FFI).

Bei einzelnen Nervenzellen führt die FFI-Struktur dazu, dass die Zellen wie ein Filter für gleichzeitige Signale funktionieren: Jede Nervenzelle bekommt Signale von Tausenden von vorgeschalteten Zellen und „summiert" diese Eingangssignale. Erst wenn ein bestimmter Schwellenwert erreicht wird, sendet die Zelle selbst ein Signal - sie „feuert". Folgt jedem erregenden Signal ein inhibierendes Signal, wird dieser Schwellenwert nur schwer erreicht. Jedes „Plus", das die Zelle zählt, wird sehr bald durch ein „Minus" aufgehoben. Nur wenn sehr viele erregende Signale gleichzeitig eintreffen, so dass der Schwellenwert erreicht wird, bevor die inhibierenden Signale nachfolgen, hat die Zelle eine Chance, zu feuern.

Für die Weitergabe von Informationen im Gehirn kann ein solcher Filter für Gleichzeitigkeit von Bedeutung sein, denn Sinneswahrnehmungen führen oft zu synchroner - also gleichzeitiger Aktivität von Nervenzellen im Gehirn. Diese werden dann bevorzugt weitergeleitet.

In Computersimulationen untersuchten die Freiburger Wissenschaftler, wie FFI die Signalweitergabe in einer solchen Struktur beeinflusst. Auch hier, so zeigten sie, führt FFI zu einer Selektion von synchronen Signalen - asynchrone Signale werden herausgefiltert. Wie synchron das Signal sein muss, damit es transportiert wird, hängt von der Stärke des inhibierenden Signals und von der Verzögerungszeit zwischen erregendem und inhibierendem Signal ab. Somit kann im Nervensystem über diese Faktoren die Weiterleitung von Signalen reguliert werden.

Das Nervensystem: Zentral und Peripher

Nach der Lage der Nervenbahnen im Körper unterscheidet man zwischen einem zentralen und einem peripheren Nervensystem. Das zentrale Nervensystem (ZNS) umfasst Nervenbahnen in Gehirn und Rückenmark. Es befindet sich sicher eingebettet im Schädel und dem Wirbelkanal in der Wirbelsäule. Die peripheren Nerven bilden ein weitverzweigtes Netzwerk, dessen Fasern ins Rückenmark hinein und hinaus führen.

Das willkürliche und vegetative Nervensystem

Das willkürliche Nervensystem (somatisches Nervensystem) steuert alle Vorgänge, die einem bewusst sind und die man willentlich beeinflussen kann. Dies sind zum Beispiel gezielte Bewegungen von Gesichtsmuskeln, Armen, Beinen und Rumpf.

Das vegetative Nervensystem (autonomes Nervensystem) regelt die Abläufe im Körper, die man nicht mit dem Willen steuern kann. Es ist ständig aktiv und reguliert beispielsweise Atmung, Herzschlag und Stoffwechsel. Hierzu empfängt es Signale aus dem Gehirn und sendet sie an den Körper. In der Gegenrichtung überträgt das vegetative Nervensystem Meldungen des Körpers zum Gehirn, zum Beispiel wie voll die Blase ist oder wie schnell das Herz schlägt. Das vegetative Nervensystem kann sehr rasch die Funktion des Körpers an andere Bedingungen anpassen. Ist einem Menschen beispielsweise warm, erhöht das System die Durchblutung der Haut und die Schweißbildung, um den Körper abzukühlen.

Das sympathische und parasympathische Nervensystem (Sympathikus und Parasympathikus) wirken im Körper meist als Gegenspieler: Der Sympathikus bereitet den Organismus auf körperliche und geistige Leistungen vor. Er sorgt dafür, dass das Herz schneller und kräftiger schlägt, erweitert die Atemwege, damit man besser atmen kann, und hemmt die Darmtätigkeit. Der Parasympathikus kümmert sich um die Körperfunktionen in Ruhe: Er aktiviert die Verdauung, kurbelt verschiedene Stoffwechselvorgänge an und sorgt für Entspannung.

Die Bedeutung der Synapsen für das Lernen

Eine der vielleicht wichtigsten Funktionen der Nervenzellen für unser Selbstverständnis ist die Fähigkeit zu lernen. Auch dabei spielen die Synapsen eine entscheidende Rolle. Unser Gedächtnis wird einem bestimmten Hirnareal zugeschrieben, dem Hippocampus. Bei Lernvorgängen kommt es hier zu funktionellen Veränderungen an bestimmten Synapsen, die dazu führen, dass die elektrischen Antworten in den Empfängerzellen stärker werden. Man kann sich das wie einen Trampelpfad durch den Wald vorstellen: Je häufiger er benutzt wird, desto leichter zugänglich wird er - man kann ihn leichter wiederfinden und sich immer besser auf ihm fortbewegen. Genauso kann er aber wieder zuwuchern, wenn er nicht gebraucht wird. Das passiert auch im Gehirn - Neues lernen lässt neue Verbindungen entstehen, werden sie nicht gebraucht, werden sie auch wieder abgebaut.

Funktionelle Elektrostimulation (FES)

Die funktionelle Elektrostimulation (FES) nutzt die Aktionspotenziale im Körper, um gezielt Muskeln oder Nerven zu stimulieren. Bei der funktionellen Elektrostimulation werden externe elektrische Impulse erzeugt, um Muskeln oder Nerven zu stimulieren und Bewegungen auszulösen. Die elektrischen Impulse der funktionellen Elektrostimulation aktivieren die Muskeln, indem sie die natürlichen elektrischen Signale imitieren. Durch die gezielte Anregung der Muskeln können Bewegungen erzeugt werden, wenn die körpereigene Steuerung nicht oder nicht ausreichend funktioniert.

tags: #wie #werden #informationen #im #nervensystem #weitergeleitet