Das Gehirn ist das komplexeste Organ des menschlichen Körpers und fungiert als zentrale Steuereinheit. Es verarbeitet Sinneseindrücke, koordiniert Körperfunktionen und ermöglicht uns zu denken, zu fühlen und uns zu erinnern. In diesem Artikel werden wir den Aufbau und die Funktionsweise dieses faszinierenden Organs näher beleuchten.
Die Arbeitsweise des Gehirns: Ein komplexes Netzwerk
Das Gehirn arbeitet wie ein großer Computer. Es verarbeitet Sinneseindrücke und Informationen des Körpers und schickt Botschaften in alle Bereiche des Körpers zurück. Doch das Gehirn kann weit mehr als eine Maschine: Mit dem Gehirn denkt und fühlt der Mensch, hier liegen die Wurzeln seiner Intelligenz.
Anatomie des Gehirns: Ein Überblick
Unser Denkorgan ist ungefähr so groß wie zwei geballte Fäuste und wiegt etwa 1,5 Kilogramm. Von außen ähnelt das Gehirn durch Windungen und enge Spalten einer überdimensionalen Walnuss. Das Gehirn (Encephalon) ist der Teil des zentralen Nervensystems, der innerhalb des knöchernen Schädels liegt und diesen ausfüllt. Es besteht aus unzähligen Nervenzellen, die über zuführende und wegführende Nervenbahnen mit dem Organismus verbunden sind und ihn steuern.
Das Gehirnvolumen (Mensch) beträgt etwa 20 bis 22 Gramm pro Kilogramm Körpermasse. Das Gewicht (Gehirn) macht mit 1,5 bis zwei Kilogramm ungefähr drei Prozent des Körpergewichts aus. Ein Mensch hat ungefähr 100 Milliarden Gehirnzellen, die das zentrale Nervensystem, unser Gehirn, aufbauen und untereinander verknüpft sind. Die Zahl dieser Verknüpfungen wird auf 100 Billionen geschätzt.
Die Hauptbestandteile des Gehirns
Das menschliche Gehirn lässt sich grob in fünf Abschnitte gliedern:
Lesen Sie auch: Neurologie vs. Psychiatrie
- Großhirn (Telencephalon): Der größte und schwerste Teil des Gehirns, verantwortlich für höhere geistige Funktionen.
- Zwischenhirn (Diencephalon): Besteht unter anderem aus Thalamus und Hypothalamus und steuert wichtige Körperfunktionen.
- Mittelhirn (Mesencephalon): Der kleinste Abschnitt des Gehirns, der unter anderem den Wach-Schlaf-Rhythmus steuert.
- Kleinhirn (Cerebellum): Koordiniert Bewegungen und das Gleichgewicht.
- Nachhirn (Myelencephalon, Medulla oblongata): Bildet den Übergang zwischen Gehirn und Rückenmark und steuert lebenswichtige Funktionen wie Atmung und Kreislauf.
Die Gehirnhälften und ihre Funktionen
Das Großhirn besteht aus einer rechten und einer linken Gehirnhälfte. Beide sind durch ein dickes Bündel aus Nervenfasern verbunden, dem Balken. Jede Gehirnhälfte besteht wiederum aus sechs Bereichen (Lappen) mit unterschiedlichen Funktionen. Das Großhirn kontrolliert Bewegungen und verarbeitet Sinneseindrücke von außen. Hier entstehen bewusste und unbewusste Handlungen und Gefühle. Es ist außerdem für Sprache und Hören, Intelligenz und Gedächtnis verantwortlich.
Die beiden Gehirnhälften haben zum Teil unterschiedliche Funktionen: Während die linke Hälfte bei den meisten Menschen auf Sprache und abstraktes Denken spezialisiert ist, kommt die rechte in der Regel dann zum Einsatz, wenn es um räumliches Denken oder bildhafte Zusammenhänge geht. Die rechte Gehirnhälfte steuert die linke Körperseite, die linke Hälfte ist für die rechte Seite zuständig. Im Großhirn ist die Hirnrinde der linken Gehirnhälfte für die Sprache verantwortlich. Die Hirnrinde der rechten Gehirnhälfte vermittelt dem Gehirn die räumliche Stellung des Körpers - beispielsweise, wo sich der Fuß gerade befindet.
Hirnlappen des Großhirns
Das Großhirn wird in vier Lappen gegliedert, die durch konstante Sulci begrenzt werden: Frontal-, Parietal-, Temporal- und Okzipitallappen. In der Tiefe des Sulcus lateralis (Sylvische Fissur) befindet sich die Insula, ein ursprünglich oberflächlich gelegenes Rindenareal, das durch Wachstumsprozesse benachbarter Hirnareale (Opercula) überdeckt wird. Das Areal zwischen Sulcus parietooccipitalis und Sulcus calcarinus wird aufgrund seiner keilartigen Form als Cuneus bezeichnet.
Hirnrinde: Sitz der höheren Funktionen
Die Großhirnrinde bedeckt die gesamte Großhirnoberfläche und enthält fast drei Viertel aller Nervenzellen des Gehirns. Hier gehen die vom Thalamus vorsortierten Sinneseindrücke ein, werden weiter sortiert, bewusst gemacht und sinnvoll miteinander verknüpft. Die Großhirnrinde ist der Sitz zielgerichteten Handelns, der Wahrnehmung und des Willens. Auch wesentliche Teile unseres Gedächtnisses sind hier zu finden. Sie ist in verschiedene Unterbereiche gegliedert, sogenannte Gehirnlappen. Diese sind entsprechend ihrer Lage benannt: Stirnlappen, Schläfenlappen, Scheitellappen und Hinterhauptslappen.
Ventrikelsystem und Liquor
Das Gehirn weist mehrere Hohlräume auf, sogenannte Hirnkammern. Sie sind Teil des Ventrikelsystems, das aus vier Hirnkammern besteht, die über Öffnungen und einen Verbindungsgang miteinander verbunden sind. Darin zirkuliert Liquor. Das ist eine Flüssigkeit, die das Gehirn umgibt und es vor mechanischen Krafteinwirkungen schützt. Über das Ventrikelsystem und den Liquor wird das Gehirn mit Nährstoffen versorgt.
Lesen Sie auch: Expertise in Neurologie: Universitätsklinik Heidelberg
Graue und weiße Substanz
Das Großhirn lässt sich in Kortex (Hirnrinde), Medulla (subkortikales Marklager) und nukleäre Abschnitte (Kerngebiete) unterteilen. Kortex und Kerngebiete des Gehirns bilden als Sitz der Perikaryen von Nervenzellen die graue Substanz. Das Marklager beherbergt v. a. Nervenzellfortsätze, die von Oligodendrozyten mit einer Myelinscheide umgeben werden. Das Marklager tritt dadurch makroskopisch als weiße Substanz in Erscheinung.
Die graue Substanz im Gehirn besteht in erster Linie aus Nervenzellkörpern. Der Name kommt daher, dass die Nervenzellen im lebenden Organismus rosa sind, sich nach dessen Tod aber grau verfärben. Aus grauer Substanz bestehen etwa die Großhirnrinde, die Basalganglien, die Kleinhirnrinde und die Hirnnervenkerne. Etwa 80 Prozent der Hirndurchblutung sind für die Versorgung der grauen Substanz notwendig.
Neben der grauen Substanz gibt es noch die weiße Substanz, die aus den Nervenzellfortsätzen, den Nervenfasern (Axonen), besteht. Die weiße Substanz findet sich im Mark von Großhirn und Kleinhirn.
Basalganglien
Die Basalganglien sind eine Gruppe Großhirn- und Zwischenhirnkerne aus grauer Substanz.
Limbisches System
Das Limbische System regelt das Affekt- und Triebverhalten und dessen Verknüpfungen mit vegetativen Organfunktionen. Die zugehörigen kortikalen und subkortikalen Strukturen verteilen sich gürtelförmig (limbus = Gürtel) um den Balken und das Diencephalon (Zwischenhirn) an den medialen Seiten der Hemisphären.
Lesen Sie auch: Aktuelle Informationen zur Neurologie in Salzgitter
Zwei wichtige Teilbereiche innerhalb des limbischen Systems sind die Amygdala (Mandelkern) und der Hippocampus. Der Hippocampus ist der Arbeitsspeicher unseres Gehirns und die Schaltstelle zwischen dem Kurz- und dem Langzeitgedächtnis.
Die Funktionen des Gehirns: Eine komplexe Steuerungseinheit
Das Gehirn arbeitet wie ein großer Computer. Es verarbeitet Sinneseindrücke und Informationen des Körpers und schickt Botschaften in alle Bereiche des Körpers zurück. Doch das Gehirn kann weit mehr als eine Maschine: Mit dem Gehirn denkt und fühlt der Mensch, hier liegen die Wurzeln seiner Intelligenz.
Der Hirnstamm schaltet Informationen vom Gehirn zum Kleinhirn und dem Rückenmark um und kontrolliert Bewegungen der Augen sowie die Mimik. Der Thalamus teilt dem Großhirn unter anderem Sinneseindrücke der Haut, der Augen und der Ohren mit. Der Hypothalamus reguliert zum Beispiel Hunger, Durst und Schlaf und kontrolliert zusammen mit der Hirnanhangdrüse (Hypophyse) den Hormonhaushalt.
Die verschiedenen Anteile der Großhirnrinde übernehmen ganz unterschiedliche Funktionen. In der Hirnrinde - dem äußeren Bereich des Großhirns - sind die Lern-, Sprech- und Denkfähigkeit sowie das Bewusstsein und das Gedächtnis verankert. Hier laufen die Informationen aus den Sinnesorganen zusammen, werden verarbeitet und schließlich im Gedächtnis gespeichert.
Gedächtnis
Eine sehr wichtige Funktion des Gehirns ist das Gedächtnis - vom Ultrakurzzeit- über das Kurzzeit- bis zum Langzeitgedächtnis.
Sensorisches und motorisches Nervensystem
Über das Nervensystem tritt der Mensch in Kontakt mit seiner Umwelt. So nehmen beispielsweise Augen, Ohren, Nase, Zunge und Sensoren in der Haut, wie beispielsweise Temperatur- und Berührungssensoren, Reize aus der Umwelt wahr und leiten sie weiter zum Zentralnervensystem. Auch Informationen über den Zustand des eigenen Organismus, wie z.B. die Stellung des Körpers oder Hunger und Durst, werden registriert. Dieser Teil des Nervensystems wird als sensorisches Nervensystem bezeichnet. Dem gegenüber steht das motorische Nervensystem. Mit ihm reagiert der Organismus auf Signale aus seiner Umgebung oder vom Körper selbst. So steuert das motorische Nervensystem die Muskulatur und ermöglicht uns damit, Handlungen auszuführen und sich in der Umwelt zu bewegen.
Vegetatives Nervensystem
Vieles von dem, was unser Nervensystem leistet, machen wir bewusst. Wir entscheiden über Zuschauen oder Wegsehen, Fortgehen oder Stehenbleiben, Sprechen oder Zuhören. Der daran beteiligte Teil unseres Nervensystems unterliegt unserer willkürlichen Kontrolle. Daneben hat das Nervensystem aber auch Aufgaben, die wir nicht bewusst kontrollieren können. Jeder kennt die Situation: Beim Sport oder in Stresssituationen erhöht sich automatisch der Herzschlag, die Atmung wird schneller und man beginnt zu schwitzen. Verantwortlich dafür ist das vegetative Nervensystem, das auch als autonomes oder unwillkürliches Nervensystem bezeichnet wird, weil es nicht unserem Willen unterworfen ist. Das vegetative Nervensystem kontrolliert die Muskulatur aller Organe, regelt also lebenswichtige Körperfunktionen wie Herztätigkeit, Atmung, Kreislauf, Stoffwechsel, Verdauung, Ausscheidung, Schweißbildung, Körpertemperatur und Fortpflanzung. Außerhalb von Gehirn und Rückenmark besteht es aus dem Sympathikus und seinem Gegenspieler, dem Parasympathikus. Der Sympathikus sorgt für eine Erhöhung des Herzschlages und der Atemtätigkeit, verbessert die Durchblutung in der Muskulatur und fördert das Schwitzen. Durch den Parasympathikus hingegen schlägt das Herz langsamer, die Atmung wird ruhiger und die Verdauung wird gefördert.
Das motorische System
Das motorische System ermöglicht es uns, über Bewegungen mit der Außenwelt zu interagieren. Die Anteile des motorischen Systems sind hierarchisch organisiert. Um eine willentliche Bewegung einzuleiten, werden multiple Areale im frontalen und parietalen Kortex bis zu 2 Sekunden vor der Ausführung aktiviert. In den Assoziationsarealen wird die Notwendigkeit einer Bewegung festgestellt. Der prämotorische Kortex entwickelt einen Plan, der an den primär-motorischen Kortex weitergegeben wird. Neben der Pyramidenbahn als wichtigste Efferenz werden Fasern zu Assoziationskortex, Basalganglien, Kleinhirn und Hirnstammkernen als modulierende Feedback-Systeme entsandt. Sie gleichen eine geplante Bewegung mit dem aktuellen Zustand des Körpers ab. Die absteigenden motorischen Bahnen, welche die Aktivität von α- und γ-Motoneuronen beeinflussen, gehen vom Kortex (Pyramidenbahn) und vom Hirnstamm (extrapyramidalmotorische Bahnen) aus.
Die Blutversorgung des Gehirns: Lebensnotwendige Nährstoffe
Das Gehirn muss ständig mit genügend Sauerstoff, Glukose und weiteren Nährstoffen versorgt werden. Deshalb ist es besonders gut durchblutet. Die vordere Hirnarterie (Arteria cerebri anterior) versorgt das Gewebe hinter der Stirn und im Bereich des Scheitels. Die mittlere Hirnarterie (Arteria cerebri media) ist für die Seite und weiter innen liegende Gehirnbereiche wichtig. Die vordere und die mittlere Hirnarterie zweigen von der inneren Halsschlagader ab. Die hintere Hirnarterie (Arteria cerebri posterior) versorgt den Hinterkopf und den unteren Bereich des Gehirns sowie das Kleinhirn. Sie wird mit Blut aus den Wirbelarterien gespeist.
Bevor die drei Arterien in „ihre“ Hirnregionen ziehen und sich dort in kleinere Äste verzweigen, liegen sie nahe beieinander unterhalb des Gehirns. Hier sind sie über kleinere Blutgefäße miteinander verbunden - ähnlich wie in einem Kreisverkehr. Auch an weiter entfernten Stellen gibt es Verbindungswege zwischen den einzelnen Arterien. Das hat den Vorteil, dass Durchblutungsstörungen im Gehirn bis zu einem gewissen Grad ausgeglichen werden können: Wenn zum Beispiel ein Arterienast allmählich immer enger wird, kann über diese „Umwege“ (sogenannte Kollateralen) trotzdem Blut in den betroffenen Hirnbereich fließen.
Die feinsten Aufzweigungen (Kapillaren) der Hirnarterien geben zwar Sauerstoff und Nährstoffe aus dem Blut an die Gehirnzellen ab - für andere Stoffe sind sie jedoch weniger durchlässig als vergleichbare Blutgefäße im übrigen Körper. Fachleute nennen diese Eigenschaft „Blut-Hirn-Schranke“. Sie kann das empfindliche Gehirn zum Beispiel vor im Blut gelösten Schadstoffen schützen.
„Verbrauchtes“ - also sauerstoffarmes - Blut wird über die Gehirnvenen abtransportiert. Sie leiten es in größere Blutgefäße, die sogenannten Sinusse. Die Sinuswände sind durch harte Hirnhaut verstärkt, die die Gefäße gleichzeitig aufspannen.
Die Blutversorgung des Gehirns erfolgt über die rechte und linke innere Halsschlagader (Arteria carotis interna), die aus der gemeinsamen Halsschlagader (Arteria communis) entspringen, und über die Arteria vertebralis, die aus den Wirbelkörpern kommt und durch das Hinterhauptsloch in die Schädelhöhle eintritt. Durch weitere Arterien werden diese zu einem Gefäßring (Circulus arteriosus cerebri) geschlossen, der die Basis des Zwischenhirns umfasst.
Durch diesen Gefäßring wird sichergestellt, dass der Blutbedarf des empfindlichen Gehirns auch bei Schwankungen in der Blutzufuhr immer ausreichend ist. Der Gefäßring und seine Äste liegen zwischen zwei Hirnhäuten (der Spinngewebshaut und der inneren Hirnhaut) im sogenannten Subarachnoidalraum und sind dort von Liquor (Hirn-Rückenmarksflüssigkeit) umgeben, der die dünnwandigen Gefäße schützt.
Die Blut-Hirn-Schranke
Die feinsten Aufzweigungen (Kapillaren) der Hirnarterien geben zwar Sauerstoff und Nährstoffe aus dem Blut an die Gehirnzellen ab - für andere Stoffe sind sie jedoch weniger durchlässig als vergleichbare Blutgefäße im übrigen Körper. Fachleute nennen diese Eigenschaft „Blut-Hirn-Schranke“. Sie kann das empfindliche Gehirn zum Beispiel vor im Blut gelösten Schadstoffen schützen.
Das empfindliche Gewebe im Gehirn ist durch die Blut-Hirn-Schranke gegen schädigende Substanzen im Blut (wie Gifte, Krankheitserreger, bestimmte Medikamente etc.) abgeschirmt.
Energieverbrauch und Gehirnkapazität
Der Energieverbrauch im Gehirn ist enorm hoch. Fast ein Viertel des Gesamtenergiebedarfs des Körpers entfällt auf das Gehirn. Die Glukosemenge, die täglich mit der Nahrung aufgenommen wird, wird bis zu zwei Drittel vom Gehirn beansprucht. Die Gehirnkapazität ist deutlich größer als die, die wir im Alltag tatsächlich nutzen. Das bedeutet: Ein Großteil unserer Gehirnkapazität ist ungenutzt.
Der Hirnstoffwechsel ist so aktiv, dass es sehr viel Sauerstoff und Glucose (Energielieferant) benötigt. Denn obwohl das Gehirn nur 2% des Körpergewichts ausmacht, geht ungefähr ein Fünftel unseres gesamten Sauerstoffbedarfs an das Gehirn.
Entwicklung des Gehirns
Die embryonale Entwicklung des Gehirns aus dem Neuralrohr zeichnet sich einerseits durch ein besonderes Größenwachstum aus, andererseits durch ein ungleichmäßiges Dickenwachstum der Wand und besondere Knickstellen. Dadurch wird das Gehirn schon frühzeitig in mehrere Abschnitte unterteilt.
Aus der Hirnanlage bilden sich zunächst drei hintereinander liegende Abschnitte (primäre Hirnbläschen) heraus, die dann das Vorderhirn, das Mittelhirn und das Rautenhirn bilden. In der weiteren Entwicklung entstehen daraus fünf weitere, sekundäre Hirnbläschen: Aus dem Vorderhirn entwickeln sich Großhirn und Zwischenhirn. Aus dem Rautenhirn gehen die Medulla oblongata, die Brücke und das Kleinhirn hervor.
Das Gehirn eines Embryos entwickelt sich etwa ab der vierten Schwangerschaftswoche. Dazu bilden sich aus dem vorderen Teil Neuralrohr drei bläschenförmige Erweiterungen aus. Bereits in dieser frühen Entwicklungsphase wird das Gehirn also in unterschiedliche Abschnitte eingeteilt. Aus den drei ersten Bläschen bilden sich das Vorder-, das Mittel- und das Rautenhirn. Im Laufe der Entwicklung gehen daraus dann weitere Hirnbläschen hervor, welche die restlichen Gehirnabschnitte bilden.
Wie funktioniert das Gehirn?
Ein reibungsloses Funktionieren aller Organe und Gewebe im Körper sowie ein sinnvolles Verhalten sind nur möglich, wenn alle Organfunktionen von einer übergeordneten Kontrollinstanz koordiniert und kontrolliert werden und alle Informationen, die uns die Umwelt liefert, aufgenommen, verarbeitet und beantwortet werden. Diese Aufgabe leistet unser Gehirn, das Netzwerk aus Milliarden von Nervenzellen (Neuronen).
Die Gehirnzellen sind durch Synapsen, Kontaktstellen zwischen den Zellen, miteinander verbunden. Diese Kontaktstellen spielen eine wichtige Rolle bei der Verarbeitung der Nachrichten. Informationen aus dem Körper oder der Umwelt gelangen etwa in Form von Hormonen über das Blut oder als elektrische Impulse aus den Sinneszellen über Nervenbahnen bis ins Gehirn. Dort werden sie bewertet und verarbeitet. Als Reaktion werden entsprechende Signale vom Gehirn wieder ausgesendet - zum Beispiel an Muskeln, um sich zu bewegen, an Drüsen, um Sekrete zu produzieren und abzugeben, oder an Sinnesorgane, um Reize aus der Umwelt zu beantworten. Unser Gehirn verarbeitet Sinneswahrnehmungen, koordiniert Bewegungen und Verhaltensweisen. Außerdem kann es komplexe Informationen speichern. Doch nicht alles, was wir erleben, kann dauerhaft im Gedächtnis bleiben. Wie also funktionieren Lern- und Erinnerungsprozesse?
Ungefähr 86 Milliarden Nervenzellen vernetzen sich in einem menschlichen Gehirn. Die Neurone sind über Synapsen miteinander verbunden, die darauf spezialisiert sind, Signale elektrochemisch umzuwandeln und weiterzuleiten.
Beim Lernen werden individuell und selektiv erworbene Informationen aus der Umwelt im Gedächtnis in abrufbarer Form gespeichert. Dies geschieht manchmal nur kurzfristig, manchmal auf Erfahrungen aufbauend, auch über längere Zeiträume hinweg, zum Teil sogar für das ganze weitere Leben. Lernen basiert dabei auf einer spezifischen Verstärkung von bestimmten Synapsen, an denen die Signalübertragung durch biochemische und strukturelle Modifikationen erleichtert wird (Stichworte sind hier Langzeitpotenzierung und synaptische Plastizität). Plastische Synapsen verändern hierbei ihre Struktur und ihre Übertragungseigenschaften, was die Grundlage für Lern- und Gedächtnisprozesse ist. Manchmal bilden sich beim Lernen neue Synapsen oder nicht mehr gebrauchte Synpasen werden abgebaut.
Wie gut wir lernen und uns etwas merken können, ist dabei von Faktoren wie Aufmerksamkeit, Motivation und Belohnung abhängig. Dabei werden wichtige von unwichtigen Informationen getrennt. Im Gehirn gibt es keinen zentralen Ort, an dem Informationen gespeichert werden, aber der Hippocampus ist eine zentrale Schaltstelle für viele Gedächtnisinhalte.
Die Synapsen können dabei nutzungsabhängig optimiert und verändert werden. Der Prozess heißt auch neuronale oder synaptische Plastizität. Das beantwortet zum Beispiel die Frage „Wie lernt das Gehirn?“. Denn Lernfähigkeit kommt dadurch zustande, dass durch ständiges Wiederholen entsprechende Synapsen verstärkt werden.
Synaptische Plastizität: Die Grundlage des Lernens
Synapsen übertragen nicht nur elektrische Signale von einer Nervenzelle zur nächsten, sie können die Intensität des Signals auch verstärken oder abschwächen. Neurowissenschaftler haben herausgefunden, dass Synapsen die Effektivität der Übertragung variieren können. Man bezeichnet dieses Phänomen auch als synaptische Plastizität. So kann eine Synapse durch einen Vorgang namens Langzeitpotenzierung (LTP) verstärkt werden, indem sie mehr Botenstoff ausschüttet oder mehr Botenstoffrezeptoren bildet. So wissen Neurowissenschaftler heute, dass Synapsen selbst im erwachsenen Gehirn noch komplett neu gebildet oder abgebaut werden können. An wenigen Stellen wie zum Beispiel im Riechsystem können sogar zeitlebens neue Nervenzellen gebildet werden. Es ist also nicht übertrieben, wenn man sagt: Unser Gehirn gleicht zeitlebens einer Baustelle. Stärkung und Schwächung, Auf- und Abbau - die Stärke, mit der Signale zwischen Nervenzellen übertragen werden, wird laufend angepasst. Etwas vereinfacht könnte man sich also vorstellen, dass die Signalübertragung verstärkt wird, wenn das Gehirn etwas speichert - und abgeschwächt wird, wenn es vergisst. Ohne die Plastizität würde dem Gehirn folglich etwas Fundamentales fehlen: seine Lernfähigkeit.
Mit dem Lernen verhält es sich wie mit dem Sport: Je mehr eine bestimmte Fähigkeit gefordert wird, desto effektiver wird sie erledigt. Wer beispielsweise Taxi fährt, muss sich gut orientieren und Routen merken können. Durch die tägliche Arbeit wird so das Ortsgedächtnis immer besser. Das hinterlässt auch Spuren im Gehirn, zum Beispiel im Gehirn Londoner Taxifahrer: Forscher haben herausgefunden, dass in ihrem Gehirn der Hippocampus - ein für das Ortsgedächtnis zentrale Region im Gehirn - über die Jahre größer wird. Offenbar braucht ein derart trainiertes Orientierungsvermögen auch mehr Raum! Ob die Taxifahrer auch generell ein besseres Gedächtnis besitzen, ist noch unbekannt.
Erkrankungen des Gehirns
Stimmt etwas nicht mehr mit unserem Gehirn, so bekommen wir dies auf vielfältige Weise zu spüren. Krankheiten, die unser Gehirn betreffen, sind so vielfältig wie das Organ selbst. So gibt es Erkrankungen, die das Gehirn auf der Zellebene schädigen, wie beispielsweise Demenz, Multiple Sklerose oder Epilepsie. Krankheiten wie Depressionen, Bipolare Störungen oder Schizophrenie hingegen beruhen auf einer gestörten Balance des Gehirns.
Das Gehirn kann aber auch durch verschiedene Ursachen in seiner Funktion gestört oder beschädigt werden. Am besten können Schädigungen durch ein Gehirn-MRT festgestellt werden. Bei der Magnetresonanztomographie (MRT) wird der Kopf sozusagen gescannt und ein Bild erstellt. Je nachdem, welcher Bereich des Gehirns beschädigt wird, können ganz unterschiedliche Symptome auftreten.
Hier eine Auswahl von Erkrankungen des Gehirns:
- Schlaganfall: Eine Durchblutungsstörung im Gehirn durch den Verschluss eines Blutgefäßes, die zu Sauerstoffunterversorgung im entsprechenden Gebiet führt.
- Gehirntumor: Es gibt gutartige und bösartige Hirntumore.
- Demenz: Unter Demenz versteht man die Abnahme von Gedächtnis- und Denkleistungen. Eine Art der Demenz ist Alzheimer.
- Parkinson: Bei Parkinson kommt es zum Absterben einer bestimmten Art von Nervenzellen im Gehirn. Dadurch herrscht eine geringere Konzentration des Botenstoffs Dopamin vor.
- Psychosen: Psychosen gehören zu den schwerwiegendsten psychischen Erkrankungen, Früherkennung ist hier besonders wichtig.
Die hier genannten Erkrankungen treten also alle im ersten Teil des zentralen Nervensystems (ZNS) - dem Gehirn - auf. Den zweiten Teil des ZNS bildet das Rückenmark.
Migräne
Die Mechanismen der Migräne-Kopfschmerzen sind in den letzten Jahrzehnten intensiv erforscht worden. Sie sind bis heute aber nicht in allen Einzelheiten geklärt. Mediziner gehen jedoch davon aus, dass überaktive Nervenzellen im Hirnstamm dazu führen, dass bestimmte Fasern des Gesichtsnervs (Nervus trigeminus) Schmerzsignale an das Gehirn senden. Das verursacht eine vermehrte Ausschüttung spezieller Botenstoffe. Diese bewirken eine Dehnung der Blutgefäße und machen die Gefäßwände für Blutflüssigkeit durchlässig. Außerdem werden Entzündungsproteine freigesetzt. Die Folge: Es kommt zu einer Aufschwemmung des Hirngewebes sowie der Hirnhäute, der sogenannten neurogenen Entzündung.
Forschung am Gehirn: Ein Blick in die Zukunft
Die Forschung am Gehirn ist ein dynamisches Feld, das ständig neue Erkenntnisse liefert. Wissenschaftler auf der ganzen Welt arbeiten daran, die komplexen Funktionen des Gehirns besser zu verstehen und neue Therapien für neurologische Erkrankungen zu entwickeln.
Konnektom: Die Kartierung des Gehirns
Einen exakten Schaltplan des Gehirns lässt sich jedoch mit der MRT-Technik nicht erstellen, dafür ist die Genauigkeit der Methode nicht hoch genug. Schließlich sitzen bis zu 10.000 Synapsen auf einer Nervenzelle, 100 Billionen sind es insgesamt. Dies zeigt, wie dicht das Kommunikationsnetz im Gehirn ist. In diesem Netz können einerseits benachbarte Nervenzellen miteinander verknüpft sein, andererseits auch Zellen, die weit voneinander entfernt sind. Die Wissenschaftler entwickeln deshalb neue Methoden, mit denen sie das Konnektom entschlüsseln können.
tags: #neurologie #gehirn #png